#### Liquidity fragmentation on decentralized exchanges

#### Alfred Lehar<sup>1</sup>, Christine Parlour<sup>2</sup>, and Marius Zoican<sup>3</sup>

Haskayne School of Business @ University of Calgary

Haas School of Business @ UC Berkeley

Rotman School of Management @ University of Toronto

April 2023

## Centralized vs. decentralized exchanges: A quick compariosn

|                   | Centralized exchange    | Decentralized exchange             |
|-------------------|-------------------------|------------------------------------|
| Custody of assets | Exchange                | User                               |
| Security          | Variable; risk of hacks | High                               |
| Trading mechanism | Limit order book        | Automated market maker             |
| Transaction speed | Very fast               | Slow on-chain trades               |
| Fees              | Set by exchange         | Set by exchange $+$ network costs. |

# Decentralized exchanges (DEX) trade over US\$100bn each month



# Decentralized exchanges $\approx$ 20% of crypto trading volume

![](_page_3_Figure_1.jpeg)

Liquidity provision on Uniswap v3: A simplified mechanism

![](_page_4_Figure_1.jpeg)

![](_page_4_Figure_2.jpeg)

 $\approx$  bid quote: commitment to buy ETH

Liquidity provision on Uniswap v3: A simplified mechanism

![](_page_5_Figure_1.jpeg)

liquidity fee ( $\approx$  tick size)

Liquidity provision on Uniswap v3: A simplified mechanism

![](_page_6_Figure_1.jpeg)

![](_page_6_Figure_2.jpeg)

 $\approx$  bid quote: commitment to buy ETH

# Why is this interesting?

- 1. DEX mechanism are designed for **passive** liquidity provision.
  - ▶ Bid (ask) orders automatically convert to ask (bid) quotes after execution.
  - Liquidity is not removed, just transformed (in a potentially sub-optimal position).
- 2. Passive liquidity provision leads to lower:
  - 2.1 gas costs from interacting with Ethereum blockchain.
  - 2.2 time/effort costs of monitoring markets for smaller or retail liquidity providers.

#### Our paper finds that:

- 1. Passive and active LPs self-select in market with different fees. (tick sizes).
- 2. Passive LPs interact with a disproportionately small share of trading volume.

### Related literature

We contribute to:

- a growing literature on decentralized exchanges (Lehar and Parlour, 2021; Park, 2022; Capponi and Jia, 2021; Aoyagi, 2020; Aoyagi and Ito, 2021; Barbon and Ranaldo, 2021; Hasbrouck, Rivera, and Saleh, 2022; Foley and Krekel, 2023).
- the literature on market fragmentation (Pagano, 1989; Pagnotta and Philippon, 2018; Foucault and Menkveld, 2008).
- the literature on the role of tick sizes on liquidity provision (Foucault, Kadan, and Kandel, 2005; Yao and Ye, 2018; Li, Wang, and Ye, 2021)

## A puzzle: Liquid markets have lower volume

Each Uniswap pair can be traded on up to four markets ("liquidity pools"): Liquidity fees can be either 1, 5, 30, or 100 bps.

- 1. **Stylized fact #1:** The largest pairs (ETH-stablecoins, ETH-BTC ...) are more likely to become fragmented.
- 2. **Stylized fact #2:** For a given pair, the low-fee pool attracts higher volume. (consistent with LP competition and optimal order routing)
- 3. Stylized fact #3: For a given pair, the high-fee pool attracts more liquidity.

![](_page_9_Figure_5.jpeg)

## Outline

#### Model

**Empirical findings** 

### Model

#### Asset and markets.

A single asset with expected value v trades on two liquidity pools with fees  $h > \ell > 0$ .

## Liquidity providers (LP)

- Risk-neutral;
- ► Token endowments *q<sub>i</sub>*;
- *q<sub>i</sub>* follows a bounded
   Pareto distribution:

$$\varphi\left(\boldsymbol{q}\right)=\frac{\boldsymbol{Q}}{\boldsymbol{Q}-1}\frac{1}{\boldsymbol{q}^{2}}.$$

![](_page_11_Figure_8.jpeg)

### Model

#### Liquidity takers (LT). Two types of LT:

- 1. *small* **LT** arrive at constant rate  $\theta dt$  and optimally go to the low-fee pool first ( $\ell$ ).
- 2. large **LT** demand  $\Theta$  token units and arrive as Poisson process  $J_t(\lambda)$ . They are exogenously large enough to consume all liquidity on  $\ell$  and h pools.

Liquidity demand:

$$\mathrm{d}\mathsf{Liquidity}\mathsf{Demand}_{t} = \theta \,\mathrm{d}t + \Theta \,\mathrm{d}J_{t}\left(\lambda\right),$$

#### Gas costs.

Any interaction with a liquidity pool has a fixed cost  $\Gamma > 0$ .

## Model timing and liquidity cycles

![](_page_13_Figure_1.jpeg)

## Equilibrium

• Liquidity providers choose pool  $k^*$  to maximize expected profit per unit of time:

$$k^{\star}\left(q_{i}
ight)=rg\max_{k}\left(q_{i}f_{k}-\Gamma
ight)rac{1}{d_{k}}, ext{ where } f_{k}\in\left\{\ell,h
ight\}$$

▶  $d_k$  is the endogenous liquidity cycle duration, which  $\nearrow$  in aggregate liquidity:

$$d_L = rac{1}{\lambda} - rac{1}{\lambda} \exp\left(-rac{\mathcal{L}_L}{ heta}\lambda
ight)$$
 and  $d_H = rac{1}{\lambda},$ 

where  $\mathcal{L}_L = \int_{i \in \Omega_L} q_i \varphi(q_i)$  is the aggregate liquidity on the low-fee pool.

► The marginal **LP**'s endowment solves:

$$q_{mg}^{\star} = rac{d_H - d_L}{d_H \ell - d_L h} \Gamma$$

# Equilibrium regions

![](_page_15_Figure_1.jpeg)

# High-fee pools attract small liquidity providers

![](_page_16_Figure_1.jpeg)

# Trading volume and liquidity in equilibrium

![](_page_17_Figure_1.jpeg)

#### Gas cost and liquidity market shares

![](_page_18_Figure_1.jpeg)

## Outline

#### Model

Empirical findings

#### Data

- Data from Kaiko on all Uniswap v3 trades, liquidity deposits and withdrawals from May 4, 2021 until September 15, 2022, including traders' wallet addresses.
- Convert all token prices into USD using a minute-by-minute Kaiko Cross-Price API.
- Gas cost is the average of the lowest daily 100 gas prices for mint events.
- Focus on economically sizeable pools:
  - 1. active in more than 30 days within the sample;
  - 2. 100+ liquidity events throughout the sample;
  - 3. average daily liquidity balance > US\$100,000;
  - 4. >1% of volume for a traded pair.
- We obtain 262 pools in 224 asset pairs:
  - 1. aggregate daily volume of US\$ 1.32bn;
  - 2. end-of-sample aggregate liquidity US\$ 3.07bn.
  - 3. account for 87.56% of all Uniswap v3 interactions.

# Liquidity clienteles: high fee pools feature many small LPs.

![](_page_21_Figure_1.jpeg)

## Fragmentation and order flow characteristics

|                                  | Mint size | Trade size | Volume   | # Trades | # Wallets | LP interactions |
|----------------------------------|-----------|------------|----------|----------|-----------|-----------------|
| d <sub>low-fee</sub>             | 0.65***   | -0.32***   | 1.08***  | 1.19***  | -0.20***  | -0.18***        |
|                                  | (9.76)    | (-14.49)   | (19.86)  | (47.70)  | (-7.71)   | (-5.91)         |
| Gas price $	imes$ $d_{low-fee}$  | 0.38***   | 0.12***    | -0.03    | -0.15*** | -0.21***  | -0.24***        |
|                                  | (4.05)    | (4.22)     | (-0.80)  | (-5.65)  | (-10.06)  | (-9.76)         |
| Gas price $	imes$ $d_{high-fee}$ | 0.54***   | 0.16***    | 0.21***  | -0.01    | -0.12***  | -0.11***        |
| Ŭ                                | (5.86)    | (6.73)     | (4.06)   | (-0.28)  | (-4.19)   | (-3.38)         |
| Trade volume (pair)              | 0.69***   | 0.30***    | 0.73***  | 0.38***  | 0.06***   | 0.12***         |
|                                  | (8.12)    | (14.84)    | (15.87)  | (12.88)  | (3.44)    | (5.09)          |
| Pool size (pair)                 | -0.58*    | -0.03      | -0.07    | -0.28*** | -0.08     | -0.15**         |
|                                  | (-1.97)   | (-0.17)    | (-0.34)  | (-3.38)  | (-1.32)   | (-2.23)         |
| Volatility                       | -0.00     | -0.03***   | 0.05     | 0.11**   | 0.01      | 0.02            |
|                                  | (-0.03)   | (-3.39)    | (0.62)   | (2.58)   | (0.65)    | (1.38)          |
| Constant                         | -2.67     | -2.00      | -4.08*** | 0.54     | 1.14**    | 1.24***         |
|                                  | (-1.08)   | (-1.50)    | (-2.72)  | (1.01)   | (2.62)    | (2.69)          |
| Observations                     | 11,695    | 20,454     | 20,454   | 20,454   | 20,454    | 20,454          |
| R-squared                        | 0.26      | 0.55       | 0.59     | 0.67     | 0.62      | 0.60            |

## Do gas prices move market shares?

|                                  | Liquidity market share (%) |           |           | Volume market share (%) |          |          |
|----------------------------------|----------------------------|-----------|-----------|-------------------------|----------|----------|
| d <sub>low-fee</sub>             | -11.57***                  | -11.82*** | -11.57*** | 29.01***                | 28.49*** | 29.01*** |
|                                  | (-16.82)                   | (-16.18)  | (-16.82)  | (25.95)                 | (23.43)  | (25.92)  |
| Gas price $\times$ $d_{low-fee}$ | -2.30***                   | -2.02**   | -2.30***  | -2.30*                  | -1.37    | -2.30*   |
|                                  | (-3.19)                    | (-2.64)   | (-3.19)   | (-1.77)                 | (-0.99)  | (-1.77)  |
| Gas price                        | 1.26***                    | 1.09***   | 1.30***   | 1.28*                   | 0.80     | 1.50**   |
|                                  | (3.32)                     | (2.68)    | (3.43)    | (1.95)                  | (1.14)   | (2.23)   |
| Trade volume (pair)              | -0.28**                    | -0.31**   | -0.34**   | -0.54***                | -0.58*** | -0.91*   |
|                                  | (-2.57)                    | (-2.53)   | (-2.00)   | (-3.61)                 | (-3.43)  | (-1.72)  |
| Pool size (pair)                 | -0.77*                     | -1.10**   |           | -4.56***                | -5.11*** |          |
|                                  | (-1.74)                    | (-2.45)   |           | (-3.54)                 | (-4.10)  |          |
| Volatility                       | 0.06**                     |           | 0.06**    | 0.02                    |          | 0.02     |
|                                  | (2.54)                     |           | (2.53)    | (0.87)                  |          | (0.78)   |
| Constant                         | 65.84***                   | 68.95***  | 60.58***  | 79.44***                | 84.64*** | 48.53*** |
|                                  | (15.85)                    | (15.87)   | (24.95)   | (7.21)                  | (7.72)   | (6.44)   |
| Observations                     | 20,454                     | 21,097    | 20,454    | 20,454                  | 21,097   | 20,454   |
| R-squared                        | 0.03                       | 0.03      | 0.03      | 0.13                    | 0.13     | 0.13     |

# Liquidity flows and gas prices

|                                         | Daily mints (log US\$) |          |          | Prob (at least one mint) |          |          |
|-----------------------------------------|------------------------|----------|----------|--------------------------|----------|----------|
| d <sub>low-fee</sub>                    | 0.15*                  | 0.16**   | 0.15*    | 1.33*                    | 1.30*    | 1.33*    |
|                                         | (1.94)                 | (2.03)   | (1.94)   | (1.82)                   | (1.85)   | (1.82)   |
| Gas price $\times$ $d_{\text{low-fee}}$ | -0.36***               | -0.36*** | -0.39*** | -7.60***                 | -7.63*** | -5.68*** |
|                                         | (-6.66)                | (-6.43)  | (-5.22)  | (-9.36)                  | (-9.09)  | (-8.22)  |
| Gas price $\times$ $d_{high-fee}$       | 0.03                   | 0.00     |          | -1.92***                 | -2.14*** |          |
|                                         | (0.33)                 | (0.00)   |          | (-2.74)                  | (-2.85)  |          |
| Trade volume (pair)                     | 0.45***                | 0.44***  | 0.45***  | 1.19                     | 1.17     | 1.19     |
|                                         | (7.16)                 | (7.04)   | (7.16)   | (1.33)                   | (1.25)   | (1.33)   |
| Pool size (pair)                        | -0.45***               | -0.52*** | -0.45*** | -5.31**                  | -5.56**  | -5.31**  |
|                                         | (-2.75)                | (-3.34)  | (-2.75)  | (-2.43)                  | (-2.52)  | (-2.43)  |
| Volatility                              | 0.02                   |          | 0.02     | 1.50*                    |          | 1.50*    |
|                                         | (0.73)                 |          | (0.73)   | (1.80)                   |          | (1.80)   |
| Gas price                               |                        |          | 0.03     |                          |          | -1.92*** |
|                                         |                        |          | (0.33)   |                          |          | (-2.74)  |
| Constant                                | 0.55                   | 1.14     | 0.55     | 81.06***                 | 82.73*** | 81.06*** |
|                                         | (0.60)                 | (1.36)   | (0.60)   | (6.12)                   | (5.72)   | (6.12)   |
| Observations                            | 20,454                 | 21,097   | 20,454   | 21,097                   | 20,454   | 20,454   |
| R-squared                               | 0.51                   | 0.51     | 0.51     | 0.61                     | 0.62     | 0.62     |

# Evidence of heterogeneous liquidity cycles

![](_page_25_Figure_1.jpeg)

# Liquidity cycles on low- and high-fee pools

|                                  | Mint-burn time |           |           | Burn-mint time |            |            |
|----------------------------------|----------------|-----------|-----------|----------------|------------|------------|
| d <sub>low-fee</sub>             | -77.26***      | -95.74*** | -99.63*** | -117.18***     | -132.22*** | -132.65*** |
|                                  | (-8.53)        | (-10.46)  | (-11.01)  | (-9.76)        | (-10.49)   | (-10.53)   |
| Gas price $\times$ $d_{low-fee}$ | -30.43***      | -33.90*** | -33.62*** | -10.03         | -13.01*    | -12.93*    |
|                                  | (-3.76)        | (-4.04)   | (-4.02)   | (-1.61)        | (-1.88)    | (-1.86)    |
| Gas price $	imes$ $d_{high-fee}$ | -16.84***      | -9.75*    | -9.13     | -1.08          | 0.45       | 0.53       |
|                                  | (-2.99)        | (-1.77)   | (-1.67)   | (-0.20)        | (0.07)     | (0.08)     |
| Trade volume (pair)              |                | 1.46      | -1.04     |                | -6.54      | -7.01      |
|                                  |                | (0.18)    | (-0.13)   |                | (-0.76)    | (-0.82)    |
| Pool size (pair)                 |                | 73.87     | 80.68     |                | -74.14*    | -73.89*    |
|                                  |                | (1.05)    | (1.18)    |                | (-1.72)    | (-1.71)    |
| Volatility                       |                | 3.37      | 2.70      |                | -50.19***  | -50.23***  |
|                                  |                | (0.17)    | (0.14)    |                | (-5.57)    | (-5.59)    |
| Position out-of-range            |                |           | 46.80***  |                |            | 14.39**    |
|                                  |                |           | (8.60)    |                |            | (2.27)     |
| Constant                         | 389.08***      | -174.79   | -222.32   | 150.80***      | 831.58**   | 833.67**   |
|                                  | (110.18)       | (-0.30)   | (-0.39)   | (29.01)        | (2.39)     | (2.40)     |
| Observations                     | 287,505        | 265,182   | 265,182   | 196,145        | 182,581    | 182,581    |
| R-squared                        | 0.82           | 0.82      | 0.82      | 0.37           | 0.38       | 0.38       |

## Conclusion

- Decentralized exchanges encourage passive liquidity provision, both to reduce gas costs and encourage smaller traders to participate as market makers.
- However, fixed costs to participate in markets lead to different economies of scale for heterogeneous LPs.
- Market-maker clienteles emerge if trading is fragmented across different-fee pools.

| Low-fee pools           | High-fee pools           |
|-------------------------|--------------------------|
| High trading volume     | Low trading volume       |
| Low aggregate liquidity | High aggregate liquidity |
| Few, large <b>LP</b> s  | Many, small <b>LP</b> s  |
| Short liquidity cycles  | Large liquidity cycles   |