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Motivation

I Majority of stock exchanges world-wide are organized as limit order book markets
I Rank incoming limit orders in a queue by price-time priority

I Market makers (MM) supply liquidity by submitting limit orders to the book
I The sequential nature of the book implies that MMs absorb incoming trades one

by one, leading to imperfect risk sharing
I As compared to a double auction for example
I Contrasts the literature which typically assumes that the market making sector

absorbs incoming trades and share risks

I How well do market makers share risks? How do time priority and inventory
position affect market maker limit order strategies? What is the impact on limit
order sizes and quoted depth?
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Overview talk

I We start with empirically documenting three stylized facts on patterns in market
maker inventories
I Using data from 2021:01-2021:08 of the TMX Montréal Exchange, identify 12

market makers in the Bond and Equity futures market
I Offer a theoretical model to study optimal limit order sizes, in a market with

price-time priority and imperfect competition
I Empirically, novel identification approach of the size of inventory and adverse

selection frictions, as well as the cost of imperfect MM risk sharing
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Stylized fact 1: Inventory risk matters

Further, MMs end the day with a flat position for 72% of instruments and days.
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Stylized fact 2: do MMs share risks?

I Pairwise inventory correlation is low, for 66 MM pairs * # days * # contracts.

I Only 12,4% of volume is between HFTs; compared to 24% for LSE dealers in the
90s and 28-42% for corporate bond dealers Reiss and Werner (1998); O’Hara and
Zhou (2021)
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Stylized fact 3: Does queue position depend on inventory?

A long MM wants to be early in the queue on the ask side to unwind. Can he manage
this?
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A striking picture

1. MMs care deeply about managing inventory positions (half-life <15 minutes; end
72% of days neutral), yet...

2. they have low inventory correlations, suggesting poor risk sharing, and...
3. in the queue of limit orders, the MMs most eager to trade seem unable to get

priority

How do queue position and inventory affect limit order sizes? Does the arrival sequence
affect aggregate depth? Can we quantify this risk-sharing inefficiency?

7 / 28



A striking picture

1. MMs care deeply about managing inventory positions (half-life <15 minutes; end
72% of days neutral), yet...

2. they have low inventory correlations, suggesting poor risk sharing, and...
3. in the queue of limit orders, the MMs most eager to trade seem unable to get

priority

How do queue position and inventory affect limit order sizes? Does the arrival sequence
affect aggregate depth? Can we quantify this risk-sharing inefficiency?

7 / 28



Our contribution
Theory
A limit order book model with: i) adverse selection, ii) MM risk aversion, iii) discrete
prices with time priority, iv) imperfect competition between MMs.
1. Time priority and sequential execution →heterogeneous MM inventories and

imperfect risk sharing!
2. A larger limit order early in the queue raises adverse selection of subsequent orders

→crowding-out effect. Queuing order matters.
3. Trade-off between depth and MM risk-sharing in time-priority markets.

Empirical
1. A simple OLS regression estimates the theoretical model →structural interpretation

identifies adverse selection and inventory costs through limit order sizes
2. Quantify the risk sharing inefficiency
3. Arrival sequence of MM impacts quoted depth.
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Related literature

We contribute to various strands of literature
I Risk sharing among market makers (Reiss and Werner, 1998; Comerton-Forde,

Hendershott, Jones, Moulton, and Seasholes, 2010)
I Limit order book models used to estimate adverse selection (Sandås, 2001;

Hollifield, Miller, and Sandås, 2004)
I Identification of inventory frictions through price pressures (Kraus and Stoll, 1972;

Brogaard, Hendershott, and Riordan, 2014; Hendershott and Menkveld, 2014)
I The role of the tick size on liquidity provision (Yao and Ye (2018), Li, Wang, and

Ye (2021))
I Order book priority rules and optimal market design (Degryse and Karagiannis

(2019), Budish, Cramton, and Shim (2015))
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Model
Asset
I Single risky asset paying ṽ at t = 2, with E0ṽ = v .

Market
I One-tick market (Parlour, 1998) with two prices: p−1 < v < p1 and time priority.

Market makers
I J ≥ 2 market makers (MM) with starting inventory Ij , who maximize:

E0

[
Wealtht=2 −

γ

2
I2t=2

]
.

Impatient traders
I Market orders x at t = 1 from exponential distribution with mean φ.
I Exogenous price impact as in Sandås (2001): E [ṽ | x ] = v + λx .
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Model timing

t=0

1. MM j = 1 submits limit orders (Qbid
1 , Qask

1 ).

t=1

2. MM j = 2 submits limit orders (Qbid
2 , Qask

2 ).

3. MM j = 3 submits limit orders (Qbid
3 , Qask

3 ).

J. MM j = J submits limit orders (Qbid
J , Qask

J ).

. . .

1. Impatient trader submits

marketable order of size x.

2. The market clears.

t=2

Payoffs realized
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Optimal liquidity provision

Equilibrium condition: The marginal limit order by market maker j earns zero expected
profits:

Q?
j =

p1 − v − λφ

γ︸ ︷︷ ︸
Risk-adjusted

pie

(
γ

γ + λ

)j
+

γ

γ + λ
Ij︸ ︷︷ ︸

direct
effect

−
j∑

k=2

(
Ij−k+1

λ

γ

(
γ

γ + λ

)k−1
)

︸ ︷︷ ︸
crowding-out effect if j ≥ 2

.

Aggregate depth QJ depends on arrival sequence of MM inventories:

QJ =

J∑
k=1

[(
p1 − V − λvφ

γ
+ IJ−k+1

)(
γ

γ + λ

)k
]
.
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Sequence of arrival and aggregate depth

Empirically we ask:
1. Do individual limit order sizes

depend on inventory and queue
position?

2. Can we identify inventory and
information frictions from limit
order sizes?

3. Can we quantify the risk sharing
inefficiency?

4. Does depth depend on queuing
arrival sequence?
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Discussion

Strong assumptions:
1. Static model with only a single bid and ask price level
2. Exogenous market order flow

Strengths:
1. Retain important queuing dynamics
2. Imperfect competition between market makers
3. Interaction between adverse selection and inventory frictions
4. Simple and closed form solution that we can take to the data
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Data

1. All trades and 30-seconds BBO snapshots from TMX Montréal Exchange for:
I Ten- and Five-Year Government of Canada Bond Futures
I S&P/TSX Equity Index Standard Futures

2. Includes trader and limit order submitter IDs.

3. Includes all lit and iceberg orders.

4. Includes queue position for each order at the BBO.

5. Sample covers January 1st to August 18, 2021.

6. The TMX Montréal Exchange has strict price-time priority.
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We identify 12 market maker accounts

We follow the literature (Kirilenko, Kyle, Samadi, and Tuzun, 2017):
I Trade a lot: participate in >50 trades per day-instrument.

vspace0.1in
I Do not built significant positions: The end-of-day net position ≤ 5% of daily traded

volume.

I Mean-revert positions often during the day: The average squared deviation from
end-of-day position divided by dollar volume ≤ 2.5%

I Fourth (own criteria): Have a quote at the BBO in at least 20% of the snapshots.
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Summary statistics at the contract-day-trader level

MMs Trade count Volume Net pos. (%) σInv (%) Time at BBO (%)
Mean 2,025.91 3,870.19 0.42 0.91 52.92
St. Dev. 2,321.61 4,833.90 2.66 2.32 19.53
Pctl(25) 323 621.5 0 0.16 33.17
Median 1,190 1,792 0 0.37 51.57
Pctl(75) 3,006.8 5,641.8 0.05 0.82 69.31

non-MMs Trade count Volume Net pos. (%) σInv (%) Time at BBO (%)
Mean 82.70 229.78 73.25 55.50 1.92
St. Dev. 258.77 802.75 38.61 31.00 4.32
Pctl(25) 3 5 39.3 27.0 0.14
Median 14 25 100 66.1 0.53
Pctl(75) 62 138 100 78.7 1.92
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Question 1:

Do individual limit order sizes depend on i) inventory and ii) queue
position?
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Does inventory matter for quote sizes?

Longer inventory position means a larger Ask and smaller Bid quote.
Note: average limit order size is 1.84 contracts!
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Does queue position matter for quote sizes?
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Question 2:

Can we identify inventory and information frictions from limit order
sizes?
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Inventory concerns and adverse selection in quote sizes
The model allows for a structural estimation by OLS, identifying − λ

λ+γ and γ
λ+γ .

The near-zero correlation between queue position and inventory offers clean identification

Quote size
(1) (2) (3) (4) (5)

queue ahead ×dside −0.146∗∗∗ −0.146∗∗∗ −0.145∗∗∗ −0.144∗∗∗

(−26.431) (−26.443) (−26.127) (−25.330)
order priority ×dside −0.034∗∗∗

(−14.463)
Inventory 0.152∗∗∗ 0.152∗∗∗ 0.153∗∗∗ 0.153∗∗∗ 0.144∗∗∗

(34.501) (34.502) (34.540) (34.526) (33.250)
queue length 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.086∗∗∗

(53.066) (53.068) (54.999) (57.312) (39.906)
book depth ×dside 0.009 0.009 −0.016∗

(1.024) (1.022) (−1.859)
order imbalance ×dside 0.018

(1.604)
Adjusted R2 0.234 0.234 0.234 0.234 0.235
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Question 3:

Can we quantify the risk sharing inefficiency?
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Risk sharing inefficiency: back-of-the-envelope calculation
Divide actual squared holdings summed over all MMs by the sum under perfect risk
sharing.

If the inventory penalty is inversely proportional to the time-series SD of holdings, the
market wide inventory cost could be 4 times lower under perfect risk sharing.
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Question 4:

Does quoted depth depend on the queuing arrival sequence?
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Sequence of arrival matters for quoted depth

Tradeoff: A high correlation between inventory and queue position is bad for MMs,
since the one most eager to trade is last in the queue, yet increases quoted depth
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Quoted depth and arrival sequence

Market-maker quoted depth (contracts) on book side
(1) (2) (3) (4) (5)

ρ̂(queue, inventory)× dside 0.520 0.981∗∗ 0.972∗∗ 1.100∗∗∗
(0.701) (3.617) (3.543) (4.356)

ρ̂(queue, inventory)× dask 1.118∗∗∗
(4.207)

ρ̂(queue, inventory)× dbid −1.082∗∗
(−3.960)

queue size 1.772∗∗∗ 1.772∗∗∗ 1.693∗∗∗ 1.693∗∗∗
(16.927) (16.906) (18.348) (17.955)

quoted spread (bps) 11.534∗∗∗ 11.534∗∗∗
(8.738) (8.738)

Symbol, date, trader FE
Adjusted R2 0.188 0.677 0.678 0.690 0.690
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Conclusions
I Crowding-out effect: a large limit order to unwind inventory increases adverse

selection risk of subsequent MMs in the queue

I Queuing sequence generates a trade-off between risk sharing and liquidity provision

I The risk sharing inefficiency is a welfare loss (holding fixed the ambiguous impact
on quoted depth which depends on the queuing sequence)

I Empirically, if queue position ↑ 1 s.d. then quote size ↓ 0.146 contracts (7.93%)

I Empirically, if inventory ↑ 1 s.d. then quote size ↓ 0.152 contracts (8.2%)

I Arrival sequence randomness generates up to 8.4% variation in market depth due to
crowding out.

I Inventory positions diverge significantly; costs could be four times lower under
perfect risk sharing.
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