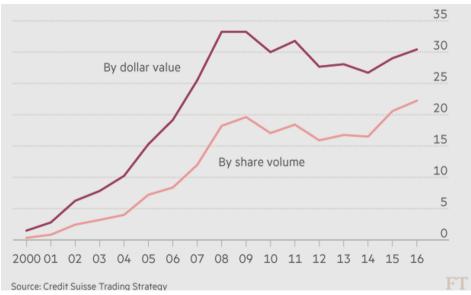
The Value of ETF Liquidity

Marta Khomyn¹, Tālis Putniņš^{1,2}, and Marius Zoican³

University of Technology Sydney

Stockholm School of Economics in Riga

University of Toronto Misssissauga and Rotman School of Management



Motivation: A tale of three ETFs

Model of ETF competition

Empirical evidence

ETFs as % of all U.S. trading volume

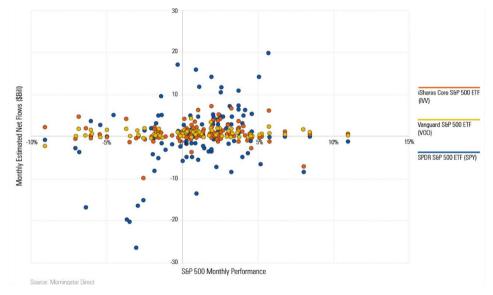
Zoom in on S&P 500: Management expense ratios

- ▶ Three ETFs track the S&P 500 index \Rightarrow Quasi-perfect substitutes.
- SPY (State Street) started in 1993. IVV (Blackrock) launched in 2000.
- > SPY has the highest tracking error, and yet charges the highest MER.

SPY: 9 bps

IVV: 4 bps

Zoom in on S&P 500: Trading volume


- A higher MER seems to go hand in hand with trading volume.
- SPY trades 20 times a second.

SPY:
$$$25$$
 bln.

IVV: \$1 bln

Are SPY traders different?

This paper

Contribution

- 1. Model of endogenous liquidity clienteles and ETF market power.
- 2. Empirical evidence that ETFs charge a "liquidity MER premium."

Economic channels and frictions

- 1. Network effects: investors prefer widely traded ETFs, but difficult to coordinate.
- 2. Horizon heterogeneity: Investors have different expected holding periods.
- 3. **Staggered entry:** First-mover advantage for ETFs due to switching costs.

Related literature

Product differentiation in the fund industry

- Hortaçsu and Syverson (2004, QJE): search costs and product differentiation allow managed funds to extract rents.
- Our paper: ETFs are homogenous products, no search friction. Differentiation is endogenous through liqudity network effects.

"Liquidity begets liquidity," fragmentation, and network effects

- Classical paper on liquidity networks: Pagano (1989, QJE).
- Foucault, Kadan, and Kandel (2005, JF), Pagnotta and Philippon (2018, Etrica).

Role of ETFs in financial markets

Easley, Michalyuk, O'Hara, and Putninš (2019), Chinco and Fos (2019), Ben-David, Franzoni, and Moussawi (2018, JF), Da and Shive (2016).

Takeaways

- ▶ Liquid ETFs charge higher fees: Spread $\searrow 1$ bp \Rightarrow MER $\nearrow 0.47$ bps.
- ▶ Heavily traded ETFs charge higher fees: Turnover \nearrow 100% \Rightarrow MER \nearrow 1.12 bps.
- Investors trade off liquidity and management fees:
 - 1. Short-horizon investors value liquidity relatively more than low fees.
 - 2. Long-horizon investors value low fees relatively more than liquidity.
- ▶ In equilibrium, ETFs specialize in different clienteles and earn economic rents:
 - 1. First-mover ETF serves frequent traders: charges a high fee, but is very liquid.
 - 2. Second-mover ETF serves long-term investors: charges a low fee, but is illiquid.
- ► For low overall AUM, the first-mover ETF optimally deters entry of competitors.
- Market segmentation generates network inefficiencies and reduces welfare.

Motivation: A tale of three ETFs

Model of ETF competition

Empirical evidence

Q&A Break

Setup

Assets

1. One risky equity index with payoff $\tilde{v} \sim \mathcal{N}(\mu, \sigma^2)$. Risk-free rate normalized to zero.

Agents

- 1. Two \mbox{ETFs} that track the index, labeled \mbox{L} and $\mbox{F}.$
 - Leader L launches before follower F.
 - Marginal cost c, fixed entry cost $\Gamma \ge 0$.
 - Management fees f_L and f_F .
- 2. Continuum of risk-neutral investors who choose between funds.
- 3. Competitive authorized participants who makes markets in each ETF.
 - ▶ Inventory constraint of *Q* ETF units.
 - Creation/redemption: With intensity η , unloads inventory to underlying market dealer.
- 4. Mean-variance competitive **dealers** in underlying stocks (risk-aversion γ).

Investors' trading mechanism

- Unit measure of investors, indexed by i.
- ▶ Investor *i* has a stochastic private value for *Q* units of the index, $\tilde{\theta}_{it} \in \{\theta, 0\}$.
- At any point in time, exactly half the investors hold the index \Rightarrow AUM = $\frac{Q}{2}$.
- ▶ Investor *i*'s private value switches between 0 and θ_i with intensity λ_i . ⇒ The expected holding period for investor *i* is λ_i^{-1} .
- Switching rates are uniformly distributed:

 $\lambda_i \sim \mathsf{Uniform}\left[\Lambda - \xi, \Lambda + \xi\right]$

- Investors know ξ (dispersion), but not Λ.
- Each investor trades off management fees and expected liquidity across ETFs.
- linvestors start in **L** but can switch at cost δ .

Model timing

ETF selection stage		ETF trading stage		
t = -2 All I in ETF <i>L</i> .	t = -1 1) Leader ETF chooses fee f_L . 2) Follower ETF chooses fee f_F .	 $t = \tau_0$ I trades with AP .	$t = \tau_1$ AP finds ETF counterparty or creates/redeems shares in the underlying market	

Equilibrium

An equilibrium of the game consists of:

- (i) An entry decision for F at t = -1.
- (ii) ETF management fee choices at t = -1.
- (iii) investors' choice of funds at t = 0;
- (iv) authorized participant's demand schedule on the ETF market, p(q);
- (v) buy and sell prices quoted by the dealer on the underlying market, $\pi(q)$.

Dealer's demand function (follows from Kyle, 1985)

$$\pi(q) = \mu + \frac{\gamma}{2}\sigma^2 q.$$

Q&A Break

Authorized participant (AP) market making

Counterparty arrival rate:

Once an investor arrives at the ETF market, the AP finds a counterparty at rate:

$$\lambda_k = rac{1}{2} \int_{i \in \Omega_k} \lambda_i rac{1}{2\xi} \mathrm{d}\lambda_i ext{ for } k \in \{L, F\} \,.$$

where Ω_k is the set of investors who choose ETF k.

AP's expected profit for price schedule p(q) = a + bq:

$$\underbrace{\frac{\lambda_k}{\eta + \lambda_k} \left[\mathbf{a} + \mathbf{b}Q - (\mathbf{a} - \mathbf{b}Q) \right]}_{\text{match on ETF market}} + \underbrace{\frac{\eta}{\eta + \lambda_k} \left[\mathbf{a} + \mathbf{b}Q - \left(\mu + \frac{\gamma}{2}\sigma^2 Q \right) \right]}_{\text{trade with underlying dealer}}.$$

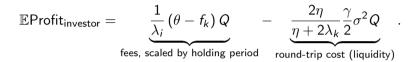
Authorized participant (AP) market making

Equilibrium ETF price

The equilibrium price for ETF k sets the AP expected profit to zero:

$$p_k(q) = \mu + rac{\eta}{\eta + 2\lambda_k} rac{\gamma}{2} \sigma^2 q$$

Round-trip cost for investors


Investors pay a round-trip transaction cost equal to $2 \|p(Q) - \mu\|$, which depends on:

- ▶ aggregate liquidity in ETF k (-)
- creation-redemption activity intensity (+).

$$\mathsf{Round} ext{-trip cost} = rac{2\eta}{\eta+2\lambda_k}rac{\gamma}{2}\sigma^2 Q$$

Investors' ETF selection

Investors' trade off ETF fees and liquidity

Network effects: The more investors join ETF k, lower trading costs for ETF k.

Coordination problem: investors want to be where other investors are.

Marginal investor (Katz and Shapiro, 1985)

There exists a threshold $\bar{\lambda}$ such that:

- investors with $\lambda_i > \overline{\lambda}$ choose the most liquid ETF (ℓ^+) ;
- ▶ investors with $\lambda_i \leq \overline{\lambda}$ choose the least liquid ETF (ℓ^-).

ETF turnover

The agggregate matching rates in the two ETF markets are:

$$egin{aligned} \lambda_{\ell^+} &= rac{1}{2} \int_{ar\lambda}^{ar\lambda+\xi} \lambda rac{1}{2\xi} \,\mathrm{d}\lambda = rac{1}{8} \left(2ar\lambda+\xi
ight). \ \lambda_{\ell^-} &= rac{1}{2} \int_{ar\lambda-\xi}^{ar\lambda} \lambda rac{1}{2\xi} \,\mathrm{d}\lambda = rac{1}{8} \left(2ar\lambda-\xi
ight). \end{aligned}$$

The marginal investor, $\bar{\lambda}$ is indifferent between the two ETFs.

Multiple equilibria

Liquid-leader (LL) All investors with $\lambda_i > \overline{\lambda}^*$ choose the ETF *L* and all investors with $\lambda_i \leq \overline{\lambda}^*$ choose the ETF *F*, where

$$\bar{\lambda}^{\star} = rac{2\eta \left(f_L - f_F\right)}{2\delta \eta + \gamma \xi \sigma^2} \text{ and } f_L > f_F.$$

Liquid-follower (LF)

All investors with $\lambda_i > \overline{\lambda}^{\star\star}$ choose the ETF *F* and all investors with $\lambda_i \leq \overline{\lambda}^{\star\star}$ choose the ETF *L*, where

$$\bar{\lambda}^{\star\star} = rac{2\eta \left(f_F - f_L\right)}{\gamma \xi \sigma^2 - 2\delta \eta}$$
 and $f_F > f_L$.

Corollary 2

At equilibrium fees, the marginal investor is the same in both equilibria.

We argue the *liquid-leader* equilibrium is more natural:

- ► The industry leader builds reputation, coordinating investor beliefs on a focal fund.
- > Past liquidity in the incumbent serves as an anchor for expected future liquidity.
- ► The liquid-follower equilibrium breaks down for high enough switching costs:

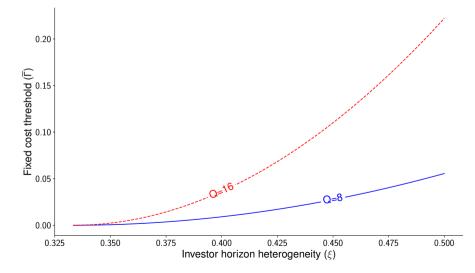
$$\delta \leq \frac{\gamma}{2\eta} \sigma^2 \xi.$$

The liquid-leader equilibrium yields a higher welfare measure.

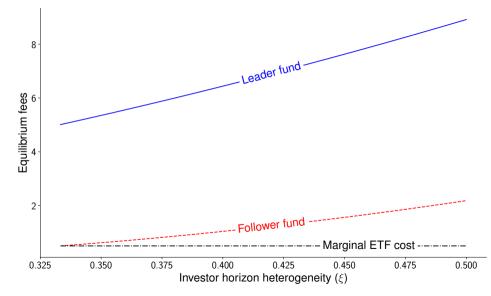
ETF fee-setting problem (liquid-leader)

Market shares

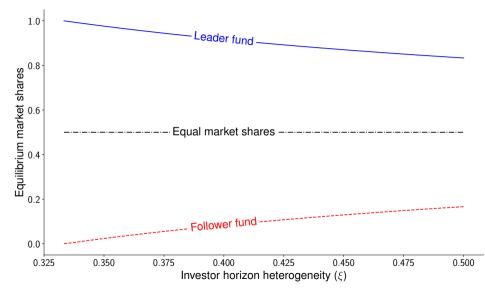
The equilibrium ETF market shares are:

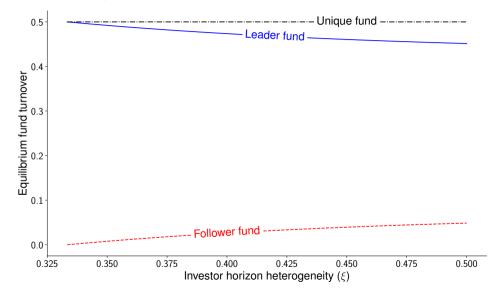

$$w_{L} = \frac{1}{2\xi} \left(\Lambda + \xi - \frac{2\eta \left(f_{L} - f_{F} \right)}{2\delta \eta + \gamma \xi \sigma^{2}} \right) \text{ and}$$
$$w_{F} = \frac{1}{2\xi} \left(\frac{2\eta \left(f_{L} - f_{F} \right)}{2\delta \eta + \gamma \xi \sigma^{2}} - \left(\Lambda - \xi \right) \right).$$

ETF profits


At t = -1, ETFs jointly maximize profits:

$$\mathbb{E}\operatorname{Profit}_{L} = \max_{f_{L}} \frac{Q}{2} w_{L} (f_{L}, f_{F}) (f_{L} - c) - \Gamma$$
$$\mathbb{E}\operatorname{Profit}_{F} = \max_{f_{F}} \frac{Q}{2} w_{F} (f_{L}, f_{F}) (f_{F} - c) - \Gamma,$$


ETF entry occurs for sufficient investor horizon heterogeneity Follower ETF enters if fixed cost is lower than some threshold, $\Gamma \leq \overline{\Gamma}$.

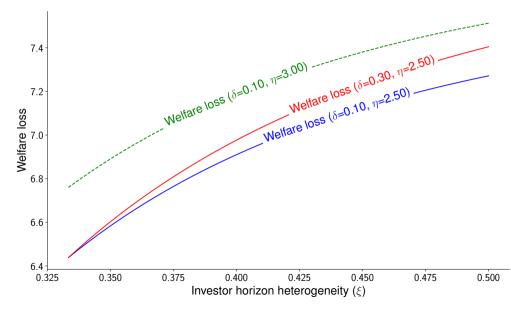

ETFs charge equilibrium fees above marginal operating cost

ETF leader enjoys larger market share in equilibrium

ETF leader has higher overall turnover

Welfare

Benchmark economy


- 1. Competitive ETF: no imperfect competition frictions.
- 2. Unique ETF: "no network splitting" inefficiency.
- 3. Turnover in the single ETF is $\frac{1}{2} \int_{\Lambda-\xi}^{\Lambda+\xi} \lambda_i \frac{1}{2\xi} d\lambda_i = \frac{1}{2} \Lambda$.
- Aggregate utility across all investors (fees wash out):

Welfare_{Benchmark} =
$$\frac{Q}{2} \left[(\theta - c) - \frac{\eta \Lambda}{\eta + \Lambda} \gamma \sigma^2 \right] - \Gamma$$

Welfare loss relative to equilibrium:

$$\Delta \mathsf{W} = \mathsf{\Gamma} + Q\delta w_{\mathsf{F}} + \underbrace{\frac{Q}{2}\gamma\sigma^{2}\left[\frac{1}{2\xi}\left(\int_{\bar{\lambda}}^{\Lambda+\xi}\frac{\eta\lambda_{i}}{\eta+2\lambda_{L}}\,\mathrm{d}\lambda_{i} + \int_{\Lambda-\xi}^{\bar{\lambda}}\frac{\eta\lambda_{i}}{\eta+2\lambda_{F}}\,\mathrm{d}\lambda_{i}\right) - \frac{\eta\Lambda}{\eta+\Lambda}\right]}_{\mathsf{Network inefficiencies}}$$

Welfare loss

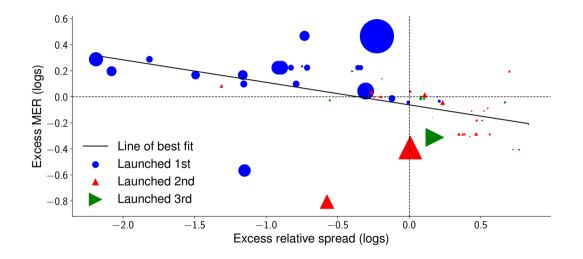
- 1. ETFs with higher fees have higher market share & attract short-term investors.
- 2. ETFs with higher fees have higher turnover and liquidity.
- 3. A multiple-ETF economy only emerges if investor heterogeneity is large enough.
- 4. A multiple-ETF economy only emerges if AUM is large enough.

Motivation: A tale of three ETFs

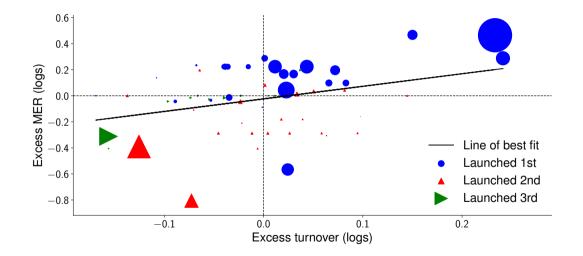
Model of ETF competition

Empirical evidence

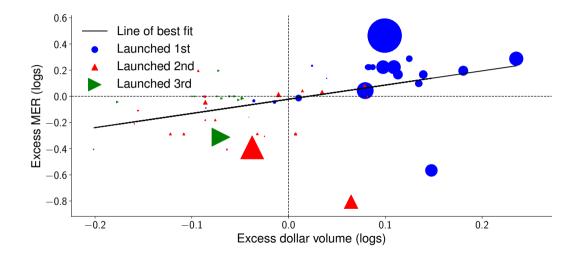
Q&A Break


► Daily data from ETF Global: exclude ETNs, leveraged/inverse ETFs.

- Daily ETF spreads and prices from CRSP.
- Large cross-section: 1,035 ETFs traded in the United States in 2017.
- ▶ 24 indices tracked by multiple ETFs (60 ETFs out of 1,035).
- ▶ However, the sample of multi-ETF indices accounts for:
 - 36% of total assets under management.
 47% of total volume.


Summary stats

	Mean	StDev	25th pctl	50th pctl	75th pctl	
Panel A. Indices with multiple ETFs per index						
MER (bps)	22.67	11.80	15.11	20.00	26.66	
Spread (bps)	6.19	4.92	3.45	4.88	6.68	
Turnover (%)	331.21	283.01	191.47	244.11	328.47	
AUM (\$ bn)	34.32	85.85	4.79	8.70	34.34	
Panel B. Indices with one ETF per index						
MER (bps)	50.13	40.25	35.00	48.00	62.20	
Spread (bps)	29.02	66.83	6.13	14.37	31.81	
Turnover (%)	534.35	1,458.76	171.21	289.54	495.36	
AUM (\$ bn)	1.48	5.44	0.02	0.12	0.69	


MER and bid-ask spreads

MER and turnover

MER and volume

Regression specification

- 1. Subsample of 60 ETFs tracking 24 indices.
- 2. Data is averaged at ETF level across trading days in 2017.
- 3. Turnover is computed as ratio of daily dollar volume scaled by AUM.

 $MER_i = \beta_0 + \beta_1 \text{Relative spread}_i + \beta_2 \text{Turnover}_i + \text{Controls} + \delta_{\text{Index}_i} + \text{error.}$

What does the model predict?

- (i) $\beta_1 < 0$: Expensive MERs are more liquid.
- (ii) $\beta_2 > 0$: Expensive MERs are more extensively traded.

Controls

- performance drag (resulting from dividend reinvestment policy, tax implications);
- creation-redemption fees;
- whether the ETF is an Unit Investment Trust (reinvesting dividends quarterly).

MERs and liquidity: Results

	MER	MER	MER
Intercept	24.46***	21.77***	20.16***
	(17.95)	(23.43)	(17.65)
Relative Spread	-0.47**		
	(-2.34)		
Turnover	. ,	0.39***	
		(4.14)	
og Dollar Volume		. ,	1.12^{***}
			(4.16)
Tracking Error	-0.10^{**}	-0.13^{**}	-0.11^{**}
	(-2.19)	(-2.60)	(-2.03)
Adjusted <i>R</i> ²	86%	78%	84%
Fixed effects	Index	Index	Index

Multi-ETF indices: A Probit model

What drives ETF competition for the same index?

- Unconditional probability of a multi-index ETF is 2.4%:
 - 1. 24 indices are tracked by multiple ETFs.
 - 2. 975 indices are tracked by a single ETF.

Prob (Multi-ETF Index) = $\delta_0 + \delta_1 AUM + Controls + error$.

What does the model predict?

(i) $\delta_1 > 0$: Higher AUM is correlated with ETF entry.

Probit regressions

	Multiple ETFs in the same index			
Intercept	-2.87***	-2.87***	-2.37***	-2.32***
	(127.11)	(126.87)	(68.87)	(73.69)
Dollar Volume		-0.07	0.44**	0.42**
		(0.06)	(4.21)	(3.83)
Relative Spread			-0.03^{**}	-0.03^{**}
			(5.32)	(4.10)
Major Index Dummy	0.56**	0.56**	0.56**	
	(3.60)	(3.62)	(4.32)	
AUM	0.04***	0.04***		
	(23.76)	(17.22)		
Top3 Issuer Dummy	0.51^{*}	0.51***	0.56**	0.82***
	(3.12)	(3.07)	(4.09)	(10.24)

▶ *Top 3 Issuer*: Vanguard, BlackRock, State Street.

► Major Index: MSCI, S&P, Russel.

Conclusions

- ▶ Liquid ETFs charge higher fees: Spread $\searrow 1$ bp \Rightarrow MER $\nearrow 0.47$ bps.
- ▶ Heavily traded ETFs charge higher fees: Turnover \nearrow 100% \Rightarrow MER \nearrow 1.12 bps.
- Investors trade off liquidity and management fees:
 - 1. Short-horizon investors value liquidity relatively more than low fees.
 - 2. Long-horizon investors value low fees relatively more than liquidity.
- ▶ In equilibrium, ETFs specialize in different clienteles and earn economic rents:
 - 1. First-mover ETF serves frequent traders: charges a high fee, but is very liquid.
 - 2. Second-mover ETF serves long-term investors: charges a low fee, but is illiquid.
- ► For low overall AUM, the first-mover ETF optimally deters entry of competitors.
- Market segmentation generates network inefficiencies and reduces welfare.