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Data Abundance and Investment

“[Stock pickers] are turning to some of the data‐mining techniques pioneered by their “quant” rivals  and are investing 
heavily in programmers and data scientists. They are hoping that a hybrid approach, which combines the judgment of 
an experienced stockpicker with the insights that big data can offer, will give them a new lease of life” (in “Stock pickers 

turn to big data to arrest decline” in Financial Times, February 11, 2020)



Abundance of Predictors

The alpha factory [Worldquant] breaks the process of investing
into a quantitative trading assembly line. The inputs are data
acquired by a special group that scours the globe for interesting
and new data sets [...] Researchers around the world attack
the data with computing power and mathematical techniques to
find patterns [...] They test them intensively [...] The company
has "4 millions alphas" to date and is aiming for 100 millions.
Each alpha at WorldQuant is an algorithm that seeks to profit
by predicting some future change in the price of a stock, futures
or other assets. (Wall Street Journal, April 13, 2017)



Industrialization of the search for Predictors

 



Abundance of Predictors in Aacademic Reseach

I Yan and Zheng (2017, RFS): 18, 000 signals based on
combinations of 240 accounting variables from financial
statements. Many have predictive power for returns (e.g.,
more than 500 have highly significant alpha (t − stat >| 5 |).

I Factor Zoo: The number of factors discovered by academics
grow exponentially (see Harvey and Liu (2019): “A census of
the factor zoo").



Data Abundance and Computing Power

I Two distinct drivers of this evolution:

1. More data: Data abundance: the search space for predictors get
bigger over time (e.g., one can use financial statements and satellite
images of retailers’ parking lots to forecast firms’ earnings (see
Katona et al.(2019)).

2. More computing power (it is less time consuming to explore a given
set of data): Faster computers and growth in memory capacity.



Computing Power

“We apply machine learning and big data 
analysis to financial economics. The 
algorithm requires a vast amount of 
computational power. The average time 
needed to find the optimum trading rules for 
a diversified portfolio of ten NYSE/AMEX 
volatility assets for the 40 year sample 
using a computer with an Intel® Core(TM) 
CPU i7-2600 and 16 GM RAM is 459.29 
days (11,022.97 hours). For one year it 
takes approximately 11.48 days.”

Source: Brogaard and Zareei (2019)

Source: Nordhaus (2007): «Two centuries of productivity growth in computing », Journal of Economic History



Questions

I Are the effects of greater computing power and data
abundance on financial markets similar or different? Can we
just think of more data as lowering the cost of acquiring
information in standard models?

I How do speculators optimally search for predictors? Data
mining in equilibrium

I How does progress in information technologies affect (i) the
diversity of predictors, (ii) trading profits, (iii) crowding, (iv)
asset price informativeness etc?



Our Contribution

I We develop a new model of information acquisition in financial
markets which addresses the previous questions

I We explicitly formalize the optimal search for predictors by
investors and thereby provide a micro-foundation for the cost
of acquiring predictors of a given average precision.

I The model allows to analyze separately the effects of data
abundance from those of computing power.

I Main message: Data abundance and computing power do not
have the same effects on the equilibrium of the financial
market (e.g., asset price informativeness).



Literature
I Models of information acquisition

1. All investors receive the same signal of a fixed precision (Grossman
and Stiglitz (1980, AER)) or all investors choose signals of the
same precision in equilibrium if investors are identical (Verrecchia
(1982, Eca))

2. In our case, investors are identical and choose signals of different
precisions in equilibrium (the distribution of precisions is an
equilibrium outcome).

3. The cost of acquiring a signal with a given minimal precision is
endogenous in our model (micro-founded).

I Effects of big data on financial markets
1. Veldkamp and Farboodi (2019, AER): Technological progress in

information analysis ⇔ Lower cost of acquiring information.
2. Dugast and Foucault (2018, JFE): Technological progress in

information analysis means that signals can be made available faster
but fast signals are less precise.

I Our approach is different: It allows to separate the effects of a
reduction in the cost of processing data from the effect of increasing
the universe of data available to search trading signals.



QUESTIONS?



MODEL



Model

I A risky asset with payoff: ω ∼ N (0, τ−1
ω )

I A continuum of risk averse (CARA) speculators

I Noise Traders

I Risk neutral competitive dealers

I Timing:

1. Date 0: Speculators search for predictors of the payoff of the
risky asset.

2. Date 1: Speculators, noise traders and dealers trade



Timing

Period 0 Period 1 Period 2

Data Mining:

• Each speculator
searches a 
predictor of the 
asset payoff . 

Trading:

• Each speculator observes 
the realization of her
predictor (𝒔𝜽) and chooses a 
trading strategy, x(𝒔𝜽 ,p).

• Market clears: The asset 
price is realized

Asset Payoff, 𝝎,
is realized



Predictors

I There is a continuum of “predictors” of the asset payoff. Each
predictor sθ is characterized by its type, θ such that:

sθ = cos(θ)︸ ︷︷ ︸
Signal

ω + sin(θ)εθ︸ ︷︷ ︸
Noise

(1)

where εθ ∼ N (0, τ−1
ω ), εθ⊥ω, the εθs are i.i.d. and θ ∈ [0, π2 ].

I The signal-to-noise ratio of a predictor, τ(θ), decreases with θ
on [0,∞):

τ(θ) = ( cos(θ)
sin(θ) )2 = “quality”.

I Assumption: Predictors’ types are distributed according to φ(θ) on[
0, π2

]
.



Data Mining (period 0)
I Information acquisition: A sequential search process with

multiple rounds:

1. Each round is a new exploration of data to find a predictor (e.g., a
new dataset).

1.1 With probability α(1− φ(θ)), the exploration is successful and
returns a predictor of type θ in [θ, π

2 ] with probability φ(θ).

1.2 Otherwise, the exploration is unsuccessful (returns no predictor).

2. After observing the outcome of an exploration, the speculator
decides to either (i) stop searching and trade on her latest predictor
or (ii) to explore (mine) the data further (move to another search
round).

3. Each exploration costs c.

I Assumptions: No limit on the number of explorations (the search
problem is stationary) + No Recall (Results are identical with recall).



Predictors

𝜃 𝜋 
2

𝜃

ሺ𝜃ሻ Data Frontier

Distribution of 



Optimal Data Mining

I We consider equilibria in which speculators search for
predictors using a “stopping rule strategy". Namely, in a given
search round, a speculator i :

1. Accepts the predictor found in this round if θ ≤ θ̂i

2. Mines another round if θ > θ̂i

I Speculator i’s stopping rule: θ̂i



Optimal Data Mining
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Interpretation

I Greater computing power enables speculators to process data
at a lower cost → c decreases.

I Data Abundance:
1. It pushes back the data frontier (“Hidden Gold Nugget Effect):

The quality of the best predictor increases → θ decreases.

2. It reduces the fraction of informative datasets (“Needle in the
haystack effect") → α decreases.

I Three parameters to capture the effects of progress in
information technologies: c, θ, α.



Data Abundance
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Trading (period 1)

I Speculators observe the realization of their predictors (sθ) and
trade on them at date 1.

I Trading is modeled as in Vives (1995)
1. Each speculator optimally chooses her position xi (p, sθ) given the

asset price and the signal.

2. Noise traders’ demand is η, where η ∼ N (0, ν2)

3. The asset price is set by risk neutral competitive market makers, i.e.,
such that:

p∗ = E [ω |D(p∗) ] ,
where D(p) is the aggregate demand from speculators and noise
traders.



Speculators’ Objective function

I Let ni be the realized number of search rounds for speculator i.

I A speculator chooses her search strategy, θ̂i and her trading
srategy, x∗

i (sθ, p) to maximize her expected utility:

E [− exp(−ρWi )] =

E [− exp(−ρ(xi (sθ, p)(ω − p)))]︸ ︷︷ ︸
Expected Utility from Trading

× E [exp(ρ(nic))]︸ ︷︷ ︸
Expected Utility Cost of Exploration

I Key difference with the traditional model: ni is random and its
distribution is endogenous.



QUESTIONS?



SOLVING FOR THE
EQUILIBRIUM



Equilibrium

I We focus on symmetric equilibria in which speculators all use
the same stopping rule: θ̂i = θ∗.

1. Same stopping rule ex-ante but different predictors ex-post
because the outcome of the search for predictors is random.

2. The ex-post distribution of predictors across speculators is
endogenous. We denote the average quality of predictors used in
equilibrium by τ̄(θ∗; θ, c).

I We solve for the equilibrium backward in two steps.

1. Solve for the equilibrium of the market for the risky asset given the
distribution of predictors used in equilibrium (i.e., for a given θ∗))

2. Solve for the equilibrium of the search stage, i.e., θ∗.



Equilibrium of the Trading Stage
I The analysis of the trading stage is standard.

1. A speculator with a more precise signal trades more aggressively on
his information (i.e., takes a larger position for a given difference
between his expectation of the asset payoff and the equilibrium
price).

2. The equilibrium price reflects the information about the asset payoff
contained in investors’ aggregate demand.

I The informativeness of the equilibrium price is:

I(θ∗; θ, c, α) ≡ V[ω | p∗]−1 = τω + τ̄(θ∗; θ, c, α)2)τ 2ω
ρ2ν2

,

I The equilibrium price is more informative (i.e., “closer" to the asset
payoff) if the average quality of predictors, τ̄(θ∗, θ), is higher
(“competition effect”).

I Price informativeness depends on the equilibrium search
strategy of speculators: If they mine the data less intensively (i.e.,
θ∗ increases) then price informativess drops.



Expected Utility from Trading on a Predictor
I Suppose that a speculator finds a predictor with type θ. Her

expected utility from trading on this predictor is:

h(θ, θ∗) = −
(
1 + τ(θ)τω
I(θ∗; c, θ, α)

)− 1
2

. (2)

I Thus, other things equal, a speculator’s expected utility from
trading:

1. Increases with the quality of her predictor (τ(θ))

2. Decreases with price informativeness, i.e., the average quality of
predictors used in equilibrium.

I ⇒ Search decisions are interdependent. Other things equal, a
speculator has less incentive to search if she expects others to search
intensively.



Equilibrium of the Search Stage
I Let θ̂i (possibly different from θ∗) be the stopping rule of

speculator i.

I If a speculator “rejects" a predictor in a given round, her
expected continuation value is:

J(θ̂i , θ
∗; θ, c) = exp(ρc)×

Λ(θ̂i ; θ, c)E [h(θ, θ∗)| θ ≤ θ ≤ θ∗]︸ ︷︷ ︸
Expected utility from trading

+(1− Λ(θ̂i ; θ, c))J(θ̂i , θ
∗; θ, c, α)


I Thus:

J(θ̂i , θ
∗; θ, c) =

[
exp(ρc)Λ(θ̂; θ, c)

1− exp(ρc)(1− Λ(θ̂; θ, c))

]
︸ ︷︷ ︸

Expected Cost of Search

E
[
h(θ, θ∗)| θ ≤ θ ≤ θ̂

]
︸ ︷︷ ︸
Expected utility from trading

.



Equilibrium of the Search Stage

I After discovering a predictor of type θ, a speculator can:

1. Stop searching and obtain her expected utility from trading with this
predictor, h(θ, θ∗)

2. Or keep searching and obtain the continuation value of searching:
J(θ̂, θ∗; θ, c, α).

I The speculator keeps searching if h(θ, θ∗) < J(θ̂, θ∗; θ, c, α) and
stops searching otherwise.



Equilibrium Data Mining
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Equilibrium Data Mining

I In equilibrium, a speculator’s best response θ̂(θ∗) must be θ∗:
θ∗ = θ̂(θ∗). That is, θ∗ solves:

h(θ∗, θ∗) = J(θ∗, θ∗; θ, c, α).

I Result 1: There is a unique symmetric equilibrium of the
search stage in which all speculators are active if and only if
c < c∗.

I If c > c∗, there exist an equilibrium in which (i) not all (or none)
speculators search and (ii) θ∗ = π

2 .

I We focus on c < c∗: In equilibrium, the quality of speculators’
predictors is distributed over [τ(θ∗), τ(θ)].



IMPLICATIONS



Data Abundance and Search for Predictors 1/2

I Result 2: The effect of data abundance and computing power
on speculators’ search strategy (“stopping rule") are not the
same:

1. Greater computing power (lower c) always induces speculators to
be more demanding for the quality of their predictors.

2. A push back of the data frontier (lower θ) can induce speculators
to be less demanding for the quality of their predictors for θ low
enough).

3. The needle in the haystack problem (lower α) always induce
speculators to be less demanding for the quality of their predictors.



Data Abundance and The distribution of Predictors’ quality
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Data Abundance and Search for Predictors 2/2

I Economic Mechanisms:

1. If the cost of exploration (c) decreases: The continuation value of
searching increases, holding θ∗ constant ⇒ Speculators are more
demanding (search more) in equilibrium (θ∗ declines).

2. If the quality of the most informative predictor increases:

2.1 The expected utility of trading for the speculator who finds the best
predictor increases (“hidden gold nugget effect”))

2.2 The expected utility of trading for all others speculators decreases
(competition effect)

2.3 ⇒ The net effect on the continuation value of searching is
ambiguous.

3. Needle in the haystack problem: Same as an increase in c.



Illustration
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Data Abundance and Stock Picking Skills

I One can measure the quality of predictors used by a
speculator (e.g., asset managers by running a regression of her
position on the asset return). The coefficient of this regression is

β(θ) = Quality of the Asset Manager Predictor
Risk Aversion .

I Let ∆β be the difference between the average β for the top
and bottom deciles of βs across speculators (a proxy for the
difference between β(θ∗) and β(θ)).

I Prediction: Greater computing power reduces ∆β while data
abundance can increase it.



Data Abundance and Price Informativeness

I Result 3: The effect of data abundance and computing power
on asset price informativeness are not the same:

1. Greater computing power (lower c): Positive Effect.

2. A push back of the data frontier (smaller θ): Positive Effect.

3. The needle in the haystack problem (smaller α): Negative Effect.

I Over the long run, data abundance can both push back the data
frontier and increases the needle in the haystack problem ⇒ The
effect of data abundance on asset price informativeness is ambiguous
(as found empirically by Bai, Phillipon and Savov (2015) and
Farboodi, Matray and Veldkamp (2019).)



Data Abundance and Asset Price Informativeness

Figure 1: This graph shows the evolution of price informativeness in
equilibrium, I(θ∗, θ) as a function of the data frontier, θ when
φ(θ) = 3cos(θ)sin2(θ) and α = Min{1, 0.32 + 0.8 ∗ θ}. Other parameter values,
c = 0.03, ρ = 1, σ2 = 1, ν2 = 1.



Data Abundance and Trading Profits

I Speculators’ expected trading profits:

Average Quality of Speculators’ Predictors
Risk Aversion × Price Informativeness × Volatility .

I Dispersion (variance) of speculators’ trading profits:

Variance of the Quality of Speculators’ Predictors
(Risk aversion × Price Informativeness × Volatility)2

.



Data Abundance, Computing Power, and Trading Profits

The effect of Computing power and data abundance on average
trading profits is ambiguous
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Data Abundance, Computing Power and The Dispersion
Trading Profits
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Data Abundance and Crowding
I Does data abundance make investors’ positions in the risky

asset more or less similar?

I A measure of similarity in speculators’ positions: Pairwise
correlation between the positions of speculator j and i given
the choice of their predictors:

corr(x(sθi , p∗), x(sθj , p∗)) =
(
1 + I(θ∗, θ)

τ(θi )

)− 1
2
(
1 + I(θ∗, θ)

τ(θj)

)− 1
2

I Thus, holding speculators’ precisions fixed:

1. Greater computing power reduces the pairwise correlation in
speculators’ holdings because it increases price informativeness
(speculators’ positions differ because the noise in their signals is
uncorrelated).

2. Data abundance reduces the pairwise correlation in speculators’
holdings when it reduces price informativeness (and increases it
otherwise).

I Similar (but more complex pattern) if one considers the
“average" pairwise correlation, i.e., E(corr(x(sθi , p∗), x(sθj , p∗)).



Conclusion

I A micro-foundation of information acquisition costs for
investors, based on a search model (many possible extensions).

I Data abundance and greater computing power are two distinct
dimensions of progress in information technologies. They do
not affect equilibrium outcomes in financial markets in the
same way.



Thank You! and Take Care!
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