

Differential access to dark markets and execution outcomes

James Brugler and Carole Comerton-Forde

The Microstructure Exchange April 12 2022

- Dark pools play an important role in institutional trading
 - Reduce costs by trading at midpoint
 - Reduce information leakage by not displaying orders or trade direction
- Australian equities market has two types of dark pools
 - 2 exchange-operated: open to all investors

Centre Point operated by ASX

Hidden liquidity on Cboe Australia (previously Chi-X Australia)

 13 broker-operated dark pools: allowed to restrict certain types of flow Restricted: no HFT/ELP flow

Opt-into restrictions: customer can choose not to trade with HFT/ELP flow

- 1. Are there observable differences in execution outcomes between exchange pools (with unrestricted access) and broker dark pools (where access can be restricted)?
- 2. If yes, are these differences causal?
- 3. Can any observable differences be attributed to variation in access by trader category across types of dark pools?
- An important caveat: we don't observe unexecuted orders so our results are conditional on execution

- 1. Broker dark pool trades have better average execution outcomes than exchange dark pools
 - Broker dark pool trades have less information leakage and result in less adverse selection risk for liquidity providers than exchange dark pool trades
 - Mixed evidence on price reversals and speed of price adjustments
- 2. Using pool closures to examine causal effect of venue type confirms that trades in broker dark pools have lower information leakage and less adverse selection risk
- 3. Results are driven by access restrictions
 - Broker pools that completely restrict HFT/ELP flow have lower information leakage and adverse selection risk than pools that allow traders to opt-out of this flow
 - Differences concentrated in small trades, which are more likely to involve HFT/ELP

- Dark pool heterogeneity:
 - Menkveld, Yueshen and Zhu (2017): Pecking order based on price improvement
- HFT and execution outcomes:
 - Back-running theory (Yang and Zhu, 2021)
 - HFT anticipate and trade ahead of order flow (Hirschey 2021)
 - Institutional trading costs 1 when HFT trade in the same direction (Korajcyzk and Murphy 2018; van Kervel and Menkveld 2019)
 - Implementation shortfalls 1 when orders exposed to ELP (Battalio, Hatch and Saglam 2022)
- We analyze a new dimension of heterogeneity in dark pools: access restrictions
 - 1. This causally affects for post-trade outcomes
 - 2. This is due to segmentation of orders away from HFT/ELP counterparties

- Context: sample and trading characteristics
- Execution outcomes variable definitions
- Research design
 - #1 Panel analysis
 - #2 Pool closures
 - #3 Role of restrictions
- Conclusions and caveats

Context: sample and trading characteristics I

- All dark trades for All Ordinaries stocks for Jan 2017 to Sep 2019
 - Trade and quote data from Refinitiv
- Identify Centrepoint and Cboe hidden trades directly in the data
- BDP trades marked with "NXXT" qualifier
 - Use Cboe-reported venue data for trades reported to Cboe
 - ASX venue data too expensive so use Rozetta broker trade reports
- Remove intermarket sweeps (results insensitive to this)
- Final sample has 185m dark trades across 626 stocks and 693 trading days

Context: sample and trading characteristics II

Context: sample and trading characteristics III

ELEBOURNE Execution outcome variables

- 92% of trades at midpoint so standard measures don't work ⇒ for each trade *i* at time s
 in stock *j* and day *t*, compute
 - 1. Information leakage:

$$100 \times \left| \log M_{ijt}^{s+\tau} - \log M_{ijt}^{s} \right|$$

2. Adverse selection:

$$100 \times \log(Ask_{ijt}^{s+\tau}/Bid_{ijt}^{s+\tau})$$

3. **Price reversals:**

$$1\left(sign(r_{ijt}^{s \to s+60s}) \neq sign(r_{ijt}^{s+60s \to s+30m})\right)$$

4. **Speed of adjustment:**

$$100 \times \left| \left(M_{ijt}^{s+30m} - M_{ijt}^{s+60s} \right) / M_{ijt}^{s} \right|$$

• Price impacts and spreads horizons: τ = 500ms, 1s, 10s, 30s, 1m, 5m, 30m

Research Design #1: Panel analysis

- First approach: form a panel of dark pool trades and estimate effect of trades taking place on broker dark pool vs. exchange-operated dark pool
- Data generating process at the trade level:

$$y_{ijt} = \alpha_j + \gamma_t + \beta B D P_{ijt} + \rho' X_{ijt} + \varepsilon_{ijt}$$

where y_{ijt} is execution outcome for trade *i* in stock *j* and day *t*, BDP_{ijt} is a dummy for trades on a broker dark pool, X_{ijt} are controls

• Sample has 185m trades so we take stock-day averages and estimate:

$$\bar{y}_{jt} = \alpha_j + \gamma_t + \beta \overline{BDP}_{jt} + \rho' \overline{X}_{jt} + \bar{\varepsilon}_{jt}$$

where \overline{y}_{jt} is the stock-day average of variable: $\overline{y}_{jt} = 1 / N_{jt} \sum_{i} y_{ijt}$

Research Design #1: Summary statistics

	Mean	SD	50%
Price	8.63	18.8	3.38
Daily average depth ('000s)	101	226	33.2
Daily average spread (%)	0.57	0.79	0.34
Broker dark pool	0.27	0.24	0.25
Pre-Cross Spread (%)	0.44	0.43	0.31
Abs 10s PI (%)	0.03	0.05	0.02
Abs 1min PI (%)	0.06	0.08	0.04
Abs 30min PI (%)	0.33	0.31	0.24
10s Bid-ask spread (%)	0.45	0.44	0.32
1min Bid-ask spread (%)	0.47	0.47	0.33
30min Bid-ask spread (%)	0.68	0.71	0.45
Reversal indicator	0.12	0.14	0.07
Adjustment speed	0.31	0.29	0.23

Research Design #1: Panel analysis

$$\overline{y}_{jt} = \alpha_j + \gamma_t + \beta \overline{BDP}_{jt} + \rho' \overline{X}_{jt} + \overline{\varepsilon}_{jt}$$

where \overline{y}_{jt} is the stock-day average of variable y_{ijt} : $\overline{y}_{jt} = \frac{1}{N_{jt}} \sum_{i} y_{ijt}$

	Abs PI 60s	Abs PI 30m	Spread 60s	Spread 30m	Reversals	Adjustment
β	-0.0117***	0.0020	-0.0053***	0.0128*	-0.0069***	0.0053
t-statistic	-9.35	0.48	-2.93	1.72	-3.65	1.34
FE	N&T	N&T	N&T	N&T	N&T	N&T
Controls	Х	Х	Х	Х	Х	Х
R^2	0.11	0.13	0.76	0.21	0.13	0.10
N _{obs}	242,825	242,825	242,825	242,825	242,825	242,825

Research Design #1: Panel analysis

Information leakage

Adverse selection

Research Design #2: Dark pool closures

- Identification issue in panel analysis: orders may be routed to different pools strategically?
- Three dark pools closed during our sample period:
 - BAML (March 6, 2017), UBS (April 1, 2019) and Citigroup (July 1, 2019)
- When the pool closes, brokers can no longer execute in a BDP
 - All dark pool trades of these brokers now must be routed to an exchange dark pool
- We use this as a source of exogenous variation in order routing decisions

Research Design #2: Trading in dark pools around closures

Research Design #2: Matching approach

- For each closure event, isolate CP trades from brokers whose pool close plus all broker dark pool trades in the month after the pool closure
- Match these via propensity score matching
 - 1. Estimate a separate Logit model for each stock where the dependent variable is a trade classification dummy (BDP = Treated; CP from closing broker = Control)
 - Match treated to control within stocks based on estimated propensity score, with a caliper of 0.25 standard deviations to ensure close matches on observables
 - 3. Estimate the ATT as the difference in means of BDP trades with matched CP trades from closing brokers
- Assumption: brokers route a representative sample of trades to public dark pools after closure

Research Design #2: Matching results

• Consistent results using matched analysis:

	BAML	UBS	Citi
Abs. PI (60s)	-0.0084***	-0.0044***	-0.0031***
Bid-ask Spread (60s)	-0.0264***	-0.0016***	-0.0023***
Reversal Indicator	0.0060**	-0.0024	0.0011
Price Adjustment	0.0051**	0.0023	-0.0041*

- Abs PI and bid-ask spread are defined at 60s horizon
 - Similar results at 300s horizon
 - No effect at 30min on Abs PI but some evidence of positive effect on bid-ask spreads

Robustness: Do trades in exchange pools change after closure?

$$y_{ijbt} = \alpha_j + \gamma_t + \mu_b + \beta \tau_{bt} + \rho' X_{jt} + \varepsilon_{jt}$$

where τ_{bt} is the treatment status for a trade from closing broker after pool closure

	BAML		UBS		Citi	
	Abs PI	Spread	Abs PI	Spread	Abs PI	Spread
β	-0.0024***	0.0052***	0.0006	-0.0011*	0.0000	0.0005
t-statistic	-4.02	5.36	0.99	-1.80	0.05	1.13
FE	N&T	N&T	N&T	N&T	N&T	N&T
Controls	Х	Х	Х	Х		
R^2	0.06	0.26	0.06	0.22	0.07	0.27
N _{obs}	3.99m	3.99m	5.14m	5.14m	6.43m	6.43m

• Interpretation: No changes for two of three events; some evidence that the BAML event is "contaminated" by changes in order flow after closure

Robustness: Remaining dark pool market shares

- Can restricted access explain these results?
 - Exchange dark pools include significant trading activity from HFT
 - HFT can "fish" to detect liquidity supply
 - Then trade in the same direction as the liquidity supply
- Testing this:
 - Stratify the broker dark pools into restricted vs. opt-into restrictions access and compare execution outcomes across these categories
 - Stratify dark pool trades by trade size and compare execution outcomes across broker and exchange dark pools for small and large trades

Restricted vs. opt-into restrictions

No HFT/ ELP	Opt-into no HFT/ELP	
UBS PIN	Credit Suisse Crossfinder	
Citi Match	Macquarie MAQX	
CLSA Match	Deutsche Super X	
Liquidnet	Instinet BLX	
	JP Morgan JPM-X	
	Morgan Stanley Pool	
	Virtu ITG	
	Goldman Sachs Sigma X	
	Merrill Lynch Instinct X	

Channels #1: Restricted vs. opt-into restrictions pools

$$\bar{y}_{jt} = \alpha_j + \gamma_t + \beta \overline{Restricted}_{jt} + \rho' \bar{X}_{jt} + \bar{\varepsilon}_{jt}$$

where \overline{y}_{jt} is the stock-day average as per main panel results

	Abs PI	Spread	Reversals	Adjustment
β	-0.0080***	-0.0037*	-0.0099**	-0.0236***
t-statistic	-3.94	-1.69	-2.40	-4.25
FE	N&T	N&T	N&T	N&T
Controls	Х	Х	Х	Х
R^2	0.10	0.77	0.09	0.13
Nobs	192,068	192,068	192,068	192,068

• Interpretation: Pools that do not permit any HFT/ELP have lower price impact and posttrade spreads than those that permit HFT/ELP

Channels #2: Small vs. large trades

$$\bar{y}_{jt} = \alpha_j + \gamma_t + \beta_0 \overline{D}_{jt}^{size \le \bar{\nu}} + \beta_1 \overline{BDP}_{jt}^{size \le \bar{\nu}} + \beta_2 \overline{BDP}_{jt}^{size > \bar{\nu}} + \rho' \overline{X}_{jt} + \bar{\varepsilon}_{jt}$$

where \overline{y}_{jt} is the stock-day average as per main panel results

	Abs PI	Spread	Reversals	Adjustment
$BDP \times D^{size \le \overline{v}}$	-0.0188***	-0.0062	-0.0077	-0.0119
$BDP \times D^{size > \bar{v}}$	-0.0101***	-0.0052***	-0.0066***	0.0093*
FE	N&T	N&T	N&T	N&T
Controls	Х	X	Х	X
R^2	0.11	0.75	0.10	0.13
N _{obs}	242,844	242,844	242,844	242,844

• Interpretation: Difference in price impact is largest for smaller trades where likelihood of interacting with HFT is higher

- Broker dark pools have less information leakage and less adverse selection
- Allowing venues to restrict access may be beneficial for execution outcomes for some investors
- Useful to inform market structure regulation:
 - US ATS fair access requirements likely beneficial for investors
 - EU ban on BCNs likely harmful
- Does not consider another important dimension of execution quality: execution risk
- Does not consider impact of dark trading on aggregate market quality

- Sample for each closure is all CP trades from broker whose pool closes and all other BDP trades
- Estimate logit for treatment status (trade is on a BDP vs. CP) with stock and trade controls
- For each BDP trade *i* in stock *j*, *Y*_{*ij*}, find its nearest neighbour CP trade as per:

$$\tilde{Y}_{ij} = \left\{ kj \in I_0 : \hat{e}_{kj} = \min_{kj \in I_0} \left[\hat{e}_{ij} - \hat{e}_{kj} \right] < 0.25 \ \hat{\sigma}_{\varepsilon_j} \right\}$$

• ATT is:

$$\widehat{ATT} = \frac{1}{N_m} \sum (Y_{ij} - \widetilde{Y}_{ij})$$

where N_m is the number of BDP trades matched within the caliper

• Cluster SEs at stock level when computing \widehat{ATT}

Appendix #2: Robustness checks

- Including intermarket sweeps:
 - Stronger results when we do this
- Excluding ASX NXXT trades > A\$50k:
 - No change in results if we include these or not
- Excluding Cboe hidden trades from exchange dark pool category:
 - Similar results when just focussing on CP as the control group
- Tick constraints:
 - More total DP trading in tick constrained stocks (as expected)
 - But no effect on choice between BDP vs. exchange dark pool trading so not likely to drive results