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ABSTRACT
In a dynamic model of large traders who manage inventory risk, we show that a daily market
closure coordinates liquidity. Some length of closure is welfare-improving relative to 24/7
trade, as the coordination of liquidity improves allocative efficiency, fully offsetting the costs
of the closure. A long closure is optimal for traders in small markets, while traders in large
markets would benefit from extending trading hours to near 24/7. A calibration of our model
to several large equity exchanges that have proposed extending trading hours suggests that

implementing such proposals would benefit traders.
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I. Introduction

Trading hours have historically aligned with the conventional workday due to the ne-
cessity of human involvement in both the submission and execution of trades. However,
technological advancements have significantly reduced the need for human involvement, en-
abling many markets—such as futures, foreign exchange, and cryptocurrencies—to operate
nearly continuously, often closing for only brief maintenance windows. Furthermore, the
increased globalization of firms and the financial sector has generated new demand from
market participants to respond to firm-relevant news as it emerges around the clock, often
outside the firm’s domestic trading hourSH In response, some major equity exchanges will
soon extend their trading hours beyond the traditional 6.5-hour window, moving towards
23-hour trading daysE| We analyze how changes in trading hours affect market liquidity and
trader welfare.

We study a dynamic model of large traders managing risky inventory positions of a traded
asset who rationally anticipate how their orders affect prices. Gains from trade are a result
of both inventory cost sharing and reallocation across agents with stochastic private values.
Traders optimally balance the benefits of eliminating undesired inventory against the costs
of incurring price impact. We quantify the allocative efficiency of a market in equilibria of
two market designs: one with a daily closure for a fixed fraction of the day and another with
24/7 trading. A daily closure is costly because it eliminates traders’ ability to manage their
inventory when the market is closed, leading traders to arrive at the start of the next day in
positions that may be far from desirable.

Is there any benefit to a daily market closure? If there is a closure, traders rationally

anticipate being unable to directly manage their inventory positions during the closure,

! Alternative trading systems (ATSs) have emerged to meet this demand, facilitating trading for certain
exchange-traded products from 8:00 PM to 4:00 AM Eastern Standard Time. [Eaton et al.| (2025) document
that 80% of the volume during these hours originates from the Asia-Pacific region.

2For example, 24X received SEC approval in November 2024 to launch the first registered 23/7 U.S.
equity exchange. We provided a comment letter to the SEC explaining the implications of our work for
24X’s proposal. 24X and the SEC cited our comment in a response letter and findings notice, respectively.
The New York Stock Exchange polled market participants about 24/7 trading in April 2024 and is moving
their Arca exchange’s trading hours to 22/5. The Nasdaq and CBOE EDGX equities exchanges are similarly
extending their trading sessions to 24/5. Robinhood, Charles Schwab, and Interactive Brokers already offer
24/5 access to selected equities and ETF's through ATSs such as Blue Ocean and EOS, respectively. However,
the other ten U.S.-registered equity exchanges and popular international exchanges, such as the London and
Tokyo Stock Exchanges, currently do not have public plans to extend trading hours.



which incentivizes them to further incur price impact by trading more aggressively towards
a desirable position at the end of the trading day. In turn, this aggressive trading increases
liquidity at the end of the day, which lowers the cost of trading and further incentivizes
aggressive trading at the market closure. Therefore, liquidity is coordinated, and “liquidity
begets liquidity,” resulting in very low price impact and very efficient trade at the close.

Aware that liquidity will be coordinated in the final trading session of the day, traders
have a strategic incentive to delay trade until the price impact is low in the last session of
the day. This incentive to postpone trade within the day can be sufficiently large that there
is an endogenous no-trade period in the sessions just preceding the final trading session.
The incentive to postpone trade is largest in markets with few traders, where liquidity is
spread relatively thin, and in markets where the payment of the asset’s liquidating dividend
is unlikely to occur before the next trading opportunity, making the cost of postponing trade
relatively small. To summarize, although a daily closure has a natural cost by restricting
traders’ ability to respond to shocks, it has the benefit of coordinating trade at the closure.
That benefit is also partially offset by the socially costly strategic delay of trade within the
day. This strategic delay is consistent with empirical evidence that trade at closing auctions
is highly concentrated, potentially at the expense of preceding sessions (e.g., AMEF| (2019)).
Bogousslavsky and Muravyev| (2023) find that their measure of illiquidity is seven times
higher between 3:30 and 3:45 than between 4:00 and the closing auction.

The mechanisms of the model with closure are summarized through the behavior of
intraday trade volume. We decompose traded quantities into two components that vary
over time: a component that determines the gap a trader faces between their current and
desired inventory, and a component that determines how aggressively a trader trades to
eliminate the gap. Trade aggressiveness in a given session, the second component of trade, is
increasing in liquidity. At the start of the day, traders face large gaps between their current
and desired inventory levels, as shocks to their desired inventory position occur during the
closure that traders are unable to respond to. This generates a large volume at the start of
the day despite relatively low trade aggressiveness. At the end of the day, traders trade very
aggressively to close any gap that remains. So, even though trade earlier in the day shrinks
the gap between current and desired inventory, this aggressive trade at the liquid closing
session results in large volume. In the middle of the day, the gaps between traders’ desired

and current inventories are not particularly large, and trade is not particularly aggressive,



resulting in low volume compared to other parts of the day. Thus, as in the data (e.g., (Chan
et al.| (1996), Jain and Joh| (1988)), intraday volume exhibits a U-shaped pattern.

When trade is 24/7, there is no equilibrium in which traders coordinate trade. Since
traders rationally anticipate how their demand affects prices and future inventory positions,
they break up their orders over time to minimize execution costs, leading to socially inefficient
excess inventory costs (Du and Zhu, 2017b, Rostek and Weretkal 2015, Vayanos, 1999)).
Liquidity is spread out, and price impact further increases, further incentivizing traders to
break up their orders. With 24/7 trade, liquidity is spread thinly throughout the trading
day. A market closure can potentially benefit traders by coordinating liquidity.

Next, we quantify trader welfare in various market designs. We show that there is always
a length of closure that is better than having trade 24/7. The optimal closure may be short.
We find the optimal length of closure is longer in smaller markets, that is, markets where
the number of traders and the rate of shocks to private values are small. In markets with a
large number of traders, liquidity is already substantial, minimizing the relative benefits of
coordinating trade. In markets in which shocks to private valuations are frequent, the costs
of restricting traders’ ability to respond to these shocks are high, implying a short closure is
optimal.

We calibrate our model to four different equity exchanges—NYSE, Nasdaq, CBOE EDGX,
and NYSE Arca—to assess the policy implications of likely changes to the current U.S. eq-
uity market structuref| We choose these four exchanges because the NYSE is the largest
registered U.S. equity exchange, and the Nasdaq, CBOE EDGX, and NYSE Arca have an-
nounced plans to extend to 24/5, 24/5, and 22/5 trading days, respectively. We calibrate the
model to match the model-implied intraday volume to the empirical intraday volume. The
calibration suggests that, for the exchanges we consider, the proposed changes in trading
hours will benefit traders, and a very short closure of 2 to 7 minutes is optimal. Our results
suggest that the NYSE should follow suit and extend its trading hours, as should other large
equity exchanges, such as the London and Tokyo stock exchanges, which currently have no
plans to do so. The calibrated welfare gains relative to the current market structure are
similar across counterfactuals with 23/7 trade, 24/7 trade, and the optimal closure.

Our main results are robust to allowing traders to observe noisy private signals about

fundamental asset values. Heterogeneity tends to reduce the aggressiveness of trade overall,

3 Although we focus on equity markets, the theoretical framework is applicable to other asset classes.



as it introduces a price impact resulting from adverse selection. Yet, closure still coordinates
liquidity, improving welfare by allowing traders to trade very aggressively at the end of the
day with minimal price impact, especially in markets with few traders or with infrequent
shocks to private and fundamental values.

The purpose of this paper is to evaluate the merits of changing trading hours in a frame-
work that accounts for price impact, the first-order concern for large traders. Indeed,
empirically documents that price impact is the only first-order trading cost for
a large asset manager. In this respect, this paper follows a series of papers, including
and Duffie| (2021), |Antill and Duffie (2020) and Du and Zhu| (2017b)), that evaluate market

structures in frameworks that consider price impact and the strategic incentives of traders.

Nevertheless, there are additional factors that should be considered when policymakers eval-
uate the merits of extending trading hours. These include the incentives of exchanges, par-
ticularly when markets are fragmented, the incentives of firms, the effects of trading hours
on the efficiency of closing prices, implications for international participation in financial
markets, regulatory concerns, and implications for retail traders. We discuss each of these
factors in detail in Section [VII} Given exchanges propose changes to trading hours, their
incentives are particularly important. Although a full analysis of their fee contracting and
competitive incentives in fragmented markets is beyond the scope of this paper, we do ana-
lyze the implications of changes in market structure for volume, which is a primary source of
revenue for exchanges. In particular, in large markets, we find that extending trading hours
would increase daily volume in the model, suggesting that their incentives are largely in line

with those of traders, as suggested by our calibrated welfare results.

Literature Review

There is extensive literature empirically documenting intraday and overnight patterns
in financial ma,rketsEl A substantial literature theoretically explains these facts
Wang, 2000, [Subrahmanyaml, [1994, [Foster and Viswanathanl, [1993| Brock and Kleidonl, 1992,
Foster and Viswanathan| 1990, Admati and Pfleiderer;, (1989, 1988). However, these studies
treat the duration of the daily market closure as fixed. This paper differs by varying the

“For example, Bogousslavsky] (2021), [Hendershott et al.| (2020), Lou et al.| (2019)), Branch and Ma/ (2012)),
Kelly and Clark| (2011), Cliff et al. (2008)), Branch and Ma/ (2006), |Andersen and Bollerslev| (1997), |Chan
et al.| (1996), |Amihud and Mendelson| (1991)), |Stoll and Whaley| (1990), Barclay et al| (1990), Harris (1989,
1988)), Amihud and Mendelson, (1987), Harris| (1986), Fama (1965).




length of closure and analyzing welfare in a dynamic setting with endogenous price impact, a

first-order concern for large traders. Nonetheless, some of these studies do offer mechanisms

related to ours. In a competitive setting, Hong and Wang| (2000)) takes an asset pricing

perspective and studies the implications of restricting overnight trade; we take a market

design perspective and show that under imperfect competition, restricting overnight trade

can actually enhance allocative efficiency, a novel and central result. /Admati and Pfleiderer]|
(1988)) and [Foster and Viswanathan| (1990) find that noise traders may concentrate trade to

mitigate adverse selection, although they do not study intraday patterns of trade concentra-

tion; we show that even homogeneous traders will strategically cluster trades before a daily
closure.

This paper also contributes to the literature on how common financial market structures
interact with strategic trading and the implications for the allocative efficiency of the mar-
ket (Rostek and Yoon, 2025)). (Chen and Duffie (2021), Malamud and Rostek (2017)), and
Kawakami (2017) study market fragmentation. Fuchs and Skrzypacz| (2019)), Du and Zhu
(2017b) and [Vayanos| (1999) study trading frequency. |Antill and Duffie (2020), Duffie and
(2017), and Blonien| (2024) examine the addition of a trading session at a fixed price.
(Chen et al| (2024)), Kodres and O’Brien| (1994), Subrahmanyam| (1994)), and |Greenwald and|
study circuit breakers. [Fuchs and Skrzypacz| (2015) study government market

freezes in a dynamic adverse selection model. Apart from being the endogenous outcome

of adverse price movements, circuit breakers do share conceptual similarities with daily clo-
sures. Although none of these papers study the implications of daily market closures for
both allocative efficiency and liquidity in a dynamic model.

Bid shading, or the strategic delay of trade, is a standard result in dynamic models with
price impact and strategic trade. In studies such as Antill and Duffie/ (2020), Du and Zhu
(2017D)), and [Vayanos (1999), strategic delay is a direct response to a change in market

structure. In this paper, the strategic delay before the close is a strategic response to the

endogenous coordinated trade at the end of the trading day. The coordinated trade at the
end of the day is, in some sense, the opposite of strategic delay, as traders rush to the market
in anticipation of worsening investment opportunities overnight. The fact that traders can
exhibit oscillatory-type strategic delay, and that it can be so strong as to preclude trade in

the periods just prior to the close, is theoretically novel, and an illustration of the complex



patterns that can arise in non-stationary dynamic tradeﬁ

deHaan and Glover| (2024)) is a recent paper whose focus is on the empirical portfolio
performance of retail traders as a function of trading hours. We do not directly model
retail traders. Over 90% of retail marketable orders are internalized by wholesalers off-
exchange (Gensler} 2022), suggesting that changes in exchange hours will primarily affect
retail traders through their effect on wholesalers. If the allocative efficiency gains in our
model are transmitted to retail traders through better pricing or execution, our calibration
suggests that extended trading hours would be beneficial for retail traders.

The presence of market closures is closely linked to the existence of closing auctions, whose
characteristics have been of recent interest. |Bogousslavsky and Muravyev (2023), Jegadeesh
and Wu| (2022)), and Hu and Murphy| (2025 empirically study liquidity and price efficiency
around the NYSE and Nasdaq closing auctions. The percentage of daily volume transacted
in these special sessions has reached an all-time high in recent years (Bogousslavsky and
Muravyev, [2023)), consistent with our model, which generates substantial volume near the
opening and closing. Our model predicts that if trading hours are extended, trading volume
will be less concentrated at the opening and closing sessions. The Autorité des Marchés Fi-
nanciers (AMF} |2019) has warned that concentration at the close could harm price efficiency
and liquidity beforehand. We find that although liquidity does deteriorate as traders delay
for the closing auction, the resulting social costs can be outweighed by the coordination
benefits of closure.

The paper proceeds as follows. Section [[I] defines the model. Section [[II] defines and
solves for the equilibrium and builds intuition for how the traders optimally trade with and
without a market closure. Section [[V] quantifies welfare. Section [V] calibrates the model to
several equity exchanges. Section [VI] extends the model to allow for heterogeneous signals
about a common dividend. Section[VII]discusses additional factors beyond price impact that
should be considered when evaluating the merits of extending trading hours. Section [VIT]

concludes. The Appendices provide technical details and proofs.

SRostek and Weretkal (2015) also has non-stationary market characteristics in a slightly different equi-
librium concept. In their setting, price impact is non-stationary and depends on the timing of information
about the dividend throughout the session, although equilibrium allocations are stationary functions of state
variables. In our setting, the end of the trading day coordinates and improves liquidity and increases the
trade aggressiveness embedded in demand schedules.



II. The Model

This section introduces a model of strategic trading under imperfect competition with
periodic market closures. Time is continuous and goes from 0 to co. We set a unit of clock
time to be 24 hours. Each 24 hour period is divided into K evenly spaced subperiods of
length h := % Trade occurs the first T+ 1 periods, and no trade is permitted in the last
A periods. We refer to the fraction of the 24 hours when trade can occur as “day,” and the
remaining fraction is referred to as “night.”

Let us illustrate this setup in the first day, where clock time ¢ is in [0,1). Trade occurs
at times 0, h, ..., Th, and the night spans times (T'h, 1), which includes times (7'+1)h, (T +
2)h, ..., (T + A)h. Note (T'+ A)h = 1 — h. At time 1, the next day starts, and the timing
repeats.

There are N > 3 risk-neutral traders who trade a divisible asset. Traders want to hold
the asset because it pays a liquidating dividend of v per unit of inventory held. The time to
liquidation is exponentially distributed, denoted T ~ Exp(r), so that the expected time until
liquidation is % Each trader is endowed with some portion of the asset, referred to as the
trader’s initial inventory. In addition to differing endowments, traders have private values
that motivate trade (Harris and Raviv, 1993). We assume a private value of w% per unit
of the asset is realized upon liquidation. Thus, the total value of the asset at liquidation is
v+ wk. The private value, wj, is a continuous-time random walk with normally distributed
zero-mean increments with standard deviation o that arrive at a constant rate A\. These
shocks are independent across time and traders and independent of all other shocks in the
model. Shocks to private values induce continued gains from trade over time. These shocks
can be motivated by risk management considerations or shocks to preferences. They simply
represent a reduced-form motive for trade, whether due to behavioral or rational reasons.

Each trading session is modeled as a uniform-price double auction. Each trader ¢ submits
a demand schedule D’ : R — R that is a mapping of price to demand, p — D‘(p). The

market-clearing price, p;, is the price that sets net demand to be zero,

> D) = 0. (1

Each trader pays the equilibrium price, p}, times the amount of the asset they were allocated,

Di(p}). If D'(p}) < 0, then trader 7 receives the price times the amount of the asset they sell.



The modeling of trade as an auction, as opposed to a limit-order book, provides tractability
while maintaining the important economic mechanism of price impact from trade.

Traders in the model dynamically manage inventory positions. Define trader ¢’s inventory
of the asset at time ¢ to be 2!, and the average aggregate inventory, Z := % le\il 2l is a
constant. After trade at time ¢, trader i’s inventory moves to z! + D(p}). In addition
to trading due to heterogeneous private values of the asset, traders also trade to manage
inventory costs. In particular, we assume traders incur a holding cost per unit of time of
7% (2})*/Chen and Duffie| (2021)),|Antill and Duffie| (2020)), [Duffie and Zhu/ (2017)),Du and Zhu
(2017b), Sannikov and Skrzypacz| (2016]), Rostek and Weretka/ (2012]), [Vives| (2011)), [Blonien
(2024) and Chen (2022) all use a similar quadratic holding cost. This cost can be interpreted
as representing inventory costs or collateral requirements. More generally, including these
exogenous inventory costs is a reduced-form approach to modeling incentives to risk share.ﬁ

Since traders can only manage inventory through trade during the day, and private values
can be shocked during the day or overnight, the restrictions that market closures impose have
obvious costs. If a shock to private values arrives overnight, traders will arrive at the start
of the next day at positions that are suboptimal. In the model, traders trade off maintaining
suboptimal inventory positions against price impact costs. Therefore, they trade slowly
toward their desired inventory position, potentially heightening the costs of a temporary
closure. This paper’s goal is to study the costs and benefits of daily market closures through
the organization of trade they induce.

Now, let us define the traders’ optimization problem. In the following sections, we will
study equilibria that are periodic, with a period of one day. Therefore, to ease the exposition,
we simply focus on time ¢ € [0, 1) and note that expressions at any other time are analogous.
Recall that trade during the first day occurs at times 0, A, ..., Th. For t = kh in any of these
periods apart from the last, denote any trader’s value function Vj. The value function is
a function of current inventory position 2%, current private value w?, and average aggregate

private value W = % Zf\;l w’, and satisfies the following Bellman equation:

SHaving described the model, it is worth noting slightly different assumptions— continuously paid liqui-
dating dividends, repeatedly paid dividends, private value shocks at pre-determined arrival times, correlated
private value shocks, private signals about a risky common value v (see Section , and time-varying de-
terministic inventory costs or private value shocks—do not substantively change the mechanisms of the
model.
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The maximum is over demand schedules, not simply realized demands. The first term
corresponds to the cost (allocated quantity times the market-clearing price) of trade incurred
in the double auction at time kh. The next term corresponds to the expected payoff if
the asset liquidates before the next session times the probability it liquidates before the
next session. The third term is the expected holding cost before the next session, which
incorporates the probability that the asset might liquidate, after which there is no more
holding cost. The last term is the next period’s continuation value, assuming the asset does
not liquidate before then, times the probability the asset does not liquidate before the next
period. As we will show, prices reveal the average private value W in equilibrium. Therefore,
the value function is a function of W insofar as it affects future prices and realized demands
and, thus, utility. In the last trading period of the day, that is the (7' + 1) trading session

at clock-time T'h, the Bellman equation is modified to the following:
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The terms are modified to reflect the increased likelihood that the asset liquidates before the

next trading session, as there are h(1 + A) units of clock time between trade instead of h.

III. Equilibrium

Section [[ITA] studies the equilibrium of the model of strategic trading under imperfect
competition with periodic market closures. Section studies a version of the model
without market closure that is a special case of the model studied in |Du and Zhu| (2017b)).
Sections [[TIC] through [[ITE] study results that describe the solution of the model.



A.  Equilibrium with o Daily Closure

Prior studies of uniform-price double auctions (e.g., |Antill and Duffie, (2020), |Du and
Zhu/ (2017b)), Vayanos (1999)) frequently consider equilibria that are symmetric, linear, and
stationary. That is, the equilibrium demand schedules of each trader are the same linear
combination across time of price and other relevant state variables. In our model with daily
market closures, such an equilibrium will generally not exist. The trading problem that every
trader faces is not ex-ante identical at each trading session, as the opportunity set changes
throughout the day, precluding the existence of stationary equilibria. For instance, as the
closure approaches, traders will behave differently since the inability to manage inventory
overnight presents a substantial change to their opportunity set.

Therefore, we focus on symmetric, linear, and daily-periodic demand schedules. For ex-
ample, in equilibrium, all demand schedules submitted at 9:30 AM will be the same function
every day, but all traders may use a different demand schedule at 10:00 AM than they did
at 9:30 AM. Thus, the equilibria we consider are stationary across days but not within the
same day. Concretely, we conjecture that the equilibrium demand schedule at trading session
k € {0,...,T} is of the following form:

Di (2", w',p) = a + bgp + 2" + frw', (4)
and by < 0. By market clearing, in equilibrium, trader ¢ will face the residual supply curve
of the other N — 1 traders and effectively choose a price and quantity pair.

In addition to allowing the submission of periodic, not constant, demand schedules, we
also differ from prior literature by allowing investors to submit demand schedules whose
slopes by, are 0. If trader 7 chooses demand quantity d’, then by market clearing, the price
must solve d* + Z#i(ak +brp + 2 + frw?) = 0. If by = 0, there is generally no market-
clearing price in a symmetric, linear equilibrium, unless the submitted demand schedules are
uniformly equal to 0, in which case any price clears the market. In other words, allowing by
to equal 0 is akin to allowing the traders to abstain from trade. Intuitively, if other traders
submit demand schedules equal to zero, it is equilibrium behavior for trader ¢ to submit a
demand schedule equal to zero, since trader ¢ will be allocated zero regardless of the price.

Now let us consider the case by < 0. This case corresponds to periods k& with non-zero

trade. If trader i chooses demand quantity d’, then by market clearing, the price must solve

10



d + Z#i(ak + bpp + 2’ + frw?) = 0. Therefore, the market-clearing price is
1
DI
where W™ = Zj 2i w’. Traders are strategic, and thus, they rationally anticipate and

p(d', 2 W) i=p=— d'+ (N —=Dap +cx(NZ = 2') + LW ), (5)

internalize how their demand affects prices due to imperfect competition. As price impact
itself is only a wealth transfer between traders, it is the strategic effects of avoiding price
impact that can be socially costly by reducing allocative efficiency.

A symmetric (Markov perfect) equilibrium of the above stochastic game is defined by
the sequences (ax)i_o, (bx)i_o, (cr)i_o and (fx)i_,. Equilibrium requires that if trader i
conjectures the other N — 1 traders use the demand schedule from equation , trader ¢’s
best response is to submit the same demand schedule, and the market clears. It is important
to note that we do not assume that trader ¢ must play the conjectured form of the demand
schedule, but it will be their best response to do so, contingent on others submitting linear,
symmetric, and daily-periodic demand schedules.

There are multiple equilibria when traders can submit zero demand schedules in any
period. If all other traders submit zero demands, it is equilibrium behavior for any trader to
do the same, as market clearing implies that residual demand, and thus their own equilibrium
demand, is 0. Thus, in principle, traders can abstain from trade in any combination of periods
during the trading day. In particular, two general classes of equilibria are possible: one in
which no-trade periods occur only when there is no symmetric and linear non-zero trade
equilibrium that period, and another class in which there are periods in which investors
do not trade in some periods, even though there is a symmetric and linear non-zero trade
equilibrium in at least one of the no-trade periods. The former class of equilibria is unique,
while the latter can greatly increase the number of possible equilibria. To restrain the number
of equilibria, we require that equilibria also satisfy a trembling-hand refinement. Specifically,
from the perspective of trader ¢, assume the other N — 1 traders jointly tremble between
two possible equilibria, playing one with probability 1 — ¢ and the other with probability
q. Then, we consider the limiting behavior of investor i as ¢ — 0. In particular, for the
equilibrium whose probability of being played converges to 1 to survive the refinement, we
require that trader i’s optimal demand schedule converges to its equilibrium demand at any
date. This refinement rules out fragile equilibria by selecting equilibria that are robust to

potential deviations from the equilibrium path. Moreover, it selects equilibria from the class

11



for which no-trade periods occur only when there is no symmetric and linear non-zero trade
equilibrium that period. To summarize, the equilibrium of the demand submission game

that we study is defined as follows:

DEFINITION 1: Equilibrium of the demand submission game is described by the sequences
(ar)i_o, (0k)i_g, (ck)i_y and (f1r)i_,. In each period in the trading day, equilibrium requires

that if trader i conjectures the other N — 1 traders submit the demand schedule
D (2", w',p) = ar + bp + cx2’ + frw',
where b < 0, trader 1’s best response is to submit the same demand schedule, and the market

clears. Moreover, the equilibrium must satisfy the trembling-hand refinement.

We show in Appendix [A] that an equilibrium exists, is unique, and is characterized by
Proposition [I}

PROPOSITION 1: There is a unique equilibrium of the demand submission game. Moreover,

the equilibrium has the following properties:

1. There is always non-zero trade in the last period of each day, period T'.

2. If there is at least one period with trade prior to period T', then it consists of a sequence
of contiguous periods with non-zero trade followed by a contiguous no-trade period,
either of which may be of length zero.

3. In periods with non-zero trade, the equilibrium quantity traded takes the form
ik i oo T 7
Dy (Pkn) = (Zkh - (;(wkh — Win) + Z)), (6)
where k € {0,...,T}, for ¢, € [—1,0) characterized in Appendiz . The equilibrium
market-clearing price is
* T ’7 7

th:U‘i‘th—;Z- (7)
4. Let ¢ denote the equilibrium value of ¢y if there is no market closure, as given below
in Proposition[d. In two consecutive periods of trade k,k + 1, if ¢, > €, then ¢pq <

¢. Similarly, if ¢, < ¢, then cxr1 > ¢. An analogous pattern applies to 1/by, which

determines price impact.

Even though a unique equilibrium exists, non-zero trade does not necessarily occur every

period during the day. Equivalently, there may be periods in which b, = 0 in equilibrium.

12



The equilibrium is unique even though trade can equal 0 in a given period because in periods
without trade, there is no submission of non-zero demand curves that form an equilibrium;
in equilibrium, traders abstain from trade if and only if there is no equilibrium with non-zero
trade in a given period. Proposition [1| shows that there will be a contiguous period of non-
zero trade, followed by a contiguous period without trade, followed by a final period with
trade. The overnight closure of length A then follows the final period of trade. As stated
in the proposition, it is worth bearing in mind that the contiguous periods of trade or of no
trade may be of length 0, but there is always non-zero trade at the close.

Let us discuss these results. We will begin by discussing the allocations in the model,
described in property 3 of Proposition [ Then, we will discuss the strategic incentives in
the model, summarized in property 4, and what these strategic incentives imply regarding
the patterns of trade throughout the trading day, summarized by properties 1 and 2.

First, let us look at the functional form of the allocation, c;(z* — (%(wZ —~W)+Z2)). The
allocation is the current inventory net of a measure of desired inventory, which we define as
7= %(wl — W)+ Z, multiplied by c,. Z* is the inventory position a trader would reach each
period after trade if the market were competitive. We refer to %(wZ — W) + Z as desired

inventory because if 2 = Z(w® — W) + Z for every trader, then there is no more trade in

r
equilibrium. Consider the ;ost—trade inventory position,
a1 = 2k + D7) = (L + )z — aiZy. (8)
Recalling that ¢, lies in [—1,0) when there is trade, ¢, measures trade aggressiveness as it
is the fraction of trader i’s new inventory position that is made up of their old inventory
position, and the remaining fraction is the desired inventory position. Subtracting z; from
both sides of Equation the gap between the next period’s inventory and the desired
inventory is
Zhr— 2 =1+ )z, — %) (9)
As ¢, approaches —1, which is its value under perfect competition, this gap approaches zero,
and the allocation of the asset becomes more efficient.
We will see numerically in the remaining sections that the coefficient ¢, in the equilib-
rium allocation is negative and largest in absolute value in the last session of the trading

day. As the end of the day approaches, traders are aware that they will soon lose the oppor-

tunity to manage random shocks in their desired inventory positions through trade. They
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all, therefore, have the incentive to enter the closure in a desirable inventory position. As
a result, traders are more willing to incur price impact and temporary trading costs toward
the end of the trading day. The old adage of “liquidity begets liquidity” comes into effect;
liquidity improves due to the symmetric fear of suboptimal inventory positions being exacer-
bated overnight, making it even cheaper to trade more aggressively now, further encouraging
aggressive trading.

This incentive to enter overnight in a good position is strongest in the final period of
trade. In fact, by backward induction, traders know that trading costs will be low in the
final period. Therefore, traders have an incentive to postpone trading until then, thereby
reducing liquidity in the penultimate period. This explains property 4 of the equilibrium,
which formalizes the strategic incentives in the model. Essentially, if trade is aggressive in
the next period, trade is less aggressive in this period, as traders postpone to the next period
when the price impact is lower. Similarly, if trade is less aggressive in the next period, trade
will be more aggressive in this period. Thus, trade has some oscillatory properties. In our
numerical examples, the oscillations in ¢, decay quickly as traders move backward in time
from the final trading sessions.

The incentives to postpone trade are smallest when N, the market size, is large or when
rh, the per-period discount rate, is large. When there are many traders, price impact is
generally small, implying that the benefits of a liquid final period of trade are muted. If the
per-period discount rate, rh, is large, the costs of delaying trade are large as the asset is
more likely to liquidate before the next trading opportunity. Formally, if the incentives to

postpone trade are not large, we arrive at an equilibrium with trade every period:

COROLLARY 1: If (N —1)(1 —e ™) > 1, the unique equilibrium has non-zero trade in all
periods, 0,...,T.

The condition (N — 1)(1 —e™™) > 1 is a sufficient condition that describes how large
N and rh must be in order for trade to occur every period. If the incentives to postpone
trade are sufficiently strong, the equilibrium with trade every period breaks down, and there
is at least one period of no trade leading up to the closing session. Empirically, an analog
of this result is the fact that in markets with closing auctions, liquidity prior to the closing
auction is relatively thin, as trade is delayed due to the coordination in the closing auction

(Bogousslavsky and Muravyev| (2023)), AMF| (2019)). We study the length of the period of
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no trade in the model in Section [TIC]

Before moving on to analyze the model in more detail, we note that there is a continuous
trade version of the model, which we will make use of when analyzing welfare. In this model,
trade occurs at a rate in a continuous sequence of uniform-price double auctions for the first
1 — A — e units of the day, there is a no-trade period for the next endogenous length € units
of time, and a closing auction occurs at time 1 — A. We slightly abuse notation by defining
A € [0,1) to be the fraction of the day that the market is closed in the continuous trade
model, whereas it is the number of periods the market is closed in the discrete trade model.
The derivation of this continuous trade equilibrium is in Internet Appendix [[A.4], where we
also show the convergence of the discrete trade model. In this version of the model, the
length of the no-trade period can be determined analytically, with no parameter restrictions
apart from N > 3. Moreover, prior to the no-trade period, demand schedules are stationary
and thus do not depend on time and so do not oscillate.

It is worth highlighting some of the expressions in the continuous trade version of the
model, as quantities such as ¢, and b, for the discrete trade model are provided in the
Appendix but are not readily interpretable. In the continuous trade model, the length of the
no-trade period € is

. 1 e AT 4 (1 —e AN
e:mln{l—A,;log(eAT+(1£6AT>(]\?_1))}. (10)
For e <1 — A, the coefficient ¢y in the demand function at the close, 1 — A, is
(N =2)(1—e2")
O A (I— e AN 1)’ (11)

and cp = Tbr. It’s straightforward to see that € is increasing in A (as long as the minimum

above does not bind) and decreasing in N, while both ¢z and by become more negative as
N and A increase. These comparative statics are analyzed in further detail in the discussion

surrounding Figure [2 below.

B.  Equilibrium Without a Daily Closure —24/7 Trading

Let us briefly review the solution without market closure and then compare the two
models. We make no other modifications to the model from the previous section other than
setting A = 0. Once again, we differ from most prior literature by conjecturing linear,

symmetric, and periodic equilibria of the same form as Equation [} and by allowing demand
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to be uniformly zero in any period. Periodicity again requires the demand schedules to be
periodic functions of time with period 1.

We characterize the equilibrium in Proposition [2]

PROPOSITION 2: When A = 0, there exists a unique equilibrium. The equilibrium has the

following properties:

1. The equilibrium quantity traded takes the form
i () [ i "o T 7
Dy (pin) = C(zkh - (;(wkh — Win) + Z)), (12)
where k € {0,...,T}, and ¢ € [—1,0] and is equal to

—(N=1)(1—e)+ \/(N —1)2(1 —e"h)2 4+ 4e-rh
Qe—rh
2. The equilibrium market-clearing price is

— 1.

Cc =

pl:h :U‘l—th— %Z (13)

The equilibrium strategy played is time-invariant. Despite allowing the demand schedules
submitted to be periodic across days, the unique equilibrium is constant across time, as in
Du and Zhu (2017b)). Additionally, despite allowing submitted demand curves to equal 0, no
equilibrium with zero trade in a period satisfies the trembling-hand refinement. Thus, this
equilibrium is a special case of Du and Zhu| (2017b) in which there is no adverse selection.
In the model with closure, trade is non-stationary throughout the day. Importantly, this
non-stationarity leads to a coordination of liquidity towards the end of the day.

It is worth noting that prices are the same when trade is 24/7. In equilibrium, the first-

order condition for optimal demand implies that the price has to equal the average marginal

N 9V,
i=1 9z "

on price impact since price impact is a transfer across traders. It is only a function of the

value of the asset. That is, pj;, = ]lv > This average marginal value does not depend

marginal benefit of holding the asset, which depends on the common and private values, and

the marginal cost of holding the asset, which depends on 7.

C.  Equilibrium Intuition

In this section, we compare the equilibrium in Proposition |1If with a market closure to
the equilibrium in Proposition [2{ with 24/7 trade. The introduction of an overnight closure,

which lasts h(1+ A) units of clock time, creates non-stationarity in the equilibrium demand
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Figure 1. Trading Intensity Throughout the Day

This figure plots trading intensity for various regimes throughout the day. The y-axis is the
expected percentage of the time 0 excess inventory left at time ¢ in the day. The solid lines
are market designs with a closure of 31.25% of the day from Proposition [1} and the dashed
lines are market designs without a closure from Proposition [2l The colors map to the trading
frequency of the market, with blue being K = 16 periods a day and orange being continuous
trading. The vertical dotted line is when the market closes for trading for structures with
closure. We use N = 100 and r = 1/30.

functions. In the 24/7 model, the aggressiveness of traders, ¢, is constant over time. In the
model with a daily closure, trade aggressiveness has three distinct periods of behavior. Let
us discuss this through the example displayed in Figure [I]

Figure [1| quantifies the aggressiveness of trade when there is a market closure, separately
for discrete and continuous trade versions of the model. The y-axis is the percentage of
excess inventory left relative to the start of the day for a given trader, assuming neither
shocks to private values nor asset liquidation occur. Recall excess inventory is simply the
difference between current inventory, z/, and desired inventory, z, which is closed by 1 + ¢4
in trading session k. Mathematically, the y-axis is H?:o(l + ¢;), where k is the (k + 1)™"
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trading session of the day, which occurs at clock time kh.

When trade is 24/7, ¢ is constant and between —1 and 0, and traders close |c| percent of
the excess inventory each period. When the trading frequency is higher, liquidity per trading
session is lower, which increases price impact, which further reduces traders’ willingness to
trade. |Du and Zhu| (2017b) studies the tradeoff between this strategic cost and the ability
to react to shocks more quickly by quantifying the optimal trading frequency in financial
markets.

When there is a daily closure, the strategic incentives dramatically change the equilibrium
trading patterns. Let us work backwards in time. Starting at the close, traders rationally
anticipate that they will be stuck in an inventory position overnight, which will incur flow
costs overnight irrespective of the shocks to their private values, and there is also some
chance the asset will liquidate. Moreover, traders will not be able to react to shocks to
private values that occur overnight, making excess inventory at the end of the day even less
desirable. These risks increase traders’ marginal willingness to incur additional price impact
at the end of the day to avoid a worse inventory position at the start of the following day,
which will take many trading sessions to correct due to price impact-induced bid shading.
This incentive is present among all traders. As they all trade more aggressively, liquidity
increases, which in turn decreases the price impact. Therefore, traders become even more
aggressive, and this logic repeats. The closure helps traders coordinate their trades, which
are otherwise broken into child orders when trading is 24/7. This can be seen in the plot
by the large downward jump in the amount of excess inventory held immediately after the
last trading session of the day. When trade is 24/7, the amount of excess inventory is larger
overnight than when there is a daily closure, except toward the very end of the night.

Trade is very efficient at the close, and traders are rational and strategic. Therefore, in
periods leading up to the closure, traders would like to delay trade in order to trade very
cheaply at the close. This incentive to delay trade is so strong that, in the plotted example,
there is no trade in the periods just preceding the close. Empirically, this is consistent
with Bogousslavsky and Muravyev, (2023), which finds that illiquidity is seven times higher
between 3:30 and 3:45 than at the close.

In trading periods near the start of the trading day, undesired flow costs and liquidation
risk throughout the day are sufficiently large that it is worth incurring some price impact to

optimize positions, and there is non-zero trade. When trade is continuous, trade aggressive-
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Figure 2. Trading Around the Close

We plot the aggressiveness of traders at the close, |cr|, where closer to 100% is closer to
perfect competition, with a blue dotted line, and the percentage of the trading day where no
trade endogenously happens leading up to the close with an orange solid line. In Panel A,
we plot these two quantities as a function of the market size, N. In Panel B, we plot these
two quantities as a function of the percentage of the day where the market is closed, A/K.
The continuous trade version of the blue-dotted line is equation and the continuous trade

version of the solid-orange line is equation We use 7 = 1/30 and K = 1,000 for both
plots. In Panel A, we set A/K = 73%, and in Panel B, we set N = 100.

ness is the same during this time, whether there is a closure or not, which can be seen by the
solid and dotted orange lines being indistinguishable. When trade is slower, there is some
oscillation in aggressiveness around the level of aggressiveness in the 24/7 trade model (see
property 4 of Proposition . If liquidity is better next period, agents are less willing to trade
now, which lowers aggressiveness and liquidity this period. If liquidity is poor next period,
agents are more willing to trade now and incur further price impact. So, the non-stationarity
of the trader’s problem generates an oscillation that increases in magnitude as the closure
approaches. Overall, this oscillation is relatively small in magnitude and can be seen by the
dashed blue line alternating below and above the solid blue line.
In Figure [2 we study trade aggressiveness at the close and the length of the endogenous
no-trade period. We study these two quantities as functions of the number of traders and
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the length of the overnight closure. The lines in the plot are the discrete-trade versions of
equations [10]and [I1} Panel A studies how these endogenous quantities change as the market
grows in size. First, we measure trade aggressiveness by the fraction of excess inventory that
is sold at the close, |cr|, which is plotted as a dotted blue line. The closer this value is to 100%,
the closer the model is to perfect competition, and the more efficiently the asset is traded
at the close. As the market becomes larger, price impact decreases as demand is dispersed
across more traders. Very quickly, the majority of the excess inventory is reallocated in any
given period, including the close.

The orange line in Panel A is the length of the no-trade period prior to the closure.
For the parameters considered, and when there are fewer than roughly 75 traders, there
is no trade apart from at the closing auction. Then, as the number of traders increases,
the fraction of the day with endogenously no trade decreases towards zero. As the market
grows, price impact decreases, making it less costly to trade in any period before close and
minimizing the relative benefits of coordinated liquidity at the close. For sufficiently many
traders, the length of the no-trade period is zero by Proposition [1, although this number is
not reached in Panel A.

In Panel B, we show that as the length of closure increases, trade aggressiveness and
the efficiency of trade at the close increase. As the length of closure increases, so does the
willingness of traders to incur price impact at the close. Eventually, the closure is so long
that there is only trade at the close, and the line flattens. By similar logic, the length of
the no-trade period increases as the efficiency of the closing session improves, as there is a
greater incentive to postpone trade. Eventually, there is only trade at the close, which is
mechanically moved towards the open for A large enough, when the orange line has a slope
of —1.

D. A Simulation of the Models

To examine the inventory paths that different market structures induce for traders, we
simulate a trading day for a market with ten traders. We run a single simulation for two
scenarios: first, when trade occurs for the first 6.5 hours of the day and is followed by a 17.5
hour closure, and second, when trade is 24/7. Each trader receives the same shocks to their
inventory position in the two scenarios. The only difference between the two scenarios is the

endogenous change in their strategies when there is a daily closure. We set the initial excess
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Figure 3. Simulation With and Without Closure
These figures plot excess inventory paths under the same simulated shocks over a single day
for ten traders, N = 10, but the left plot has a closure of 17.5 hours, and the right plot
allows trade 24/7. The desired excess inventory position (the solid black line) is zero, and
the shocks to traders’ private values are the same across plots and occur every period right
after trade. The parameters used are o = 1, r = 10%, K = 1,000, and v = .4.

inventory positions to be equally spaced between —.9 to .9 for the N = 10 traders.

The results of these simulations are plotted in Figure . Let us start with Figure .
While there is noise in the traders’ inventory positions during the trading day due to shocks
to their desired position, at the close, there is a large drop in the amount of excess inventory
held across traders. This drop results from the coordinated trade and liquidity a closure
induces.

Using the same shocks, we plot how the trader’s excess inventory position would have
endogenously evolved in a model with 24/7 trade in Figure . Without market closure,
traders strategically break up their orders over time, spreading out liquidity and trading
slowly toward their desired inventory positions. Without the coordination of liquidity a
closure provides, traders never substantially close the gap between their current and desired
inventories. They do appear to be in better positions by the end of the day, however. From
this simulation alone, it is unclear which scenario the traders would prefer ex ante. In

Section [[V], we will formally study trader welfare as a function of the market structure.
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Figure 4. Volume Throughout the Day
This figure is the percentage of the expected daily trading volume in each 30-minute bin
when trading occurs for 6.5 hours a day. We simulate 1,000 trading days and plot the
average fraction of daily volume in each bin. This example uses N = 500, r = 10%, o = 1,
K =1,000, and A/K = 2.

E. Volume

Intraday volume patterns can be used to summarize the intuition of the model. A robust
empirical pattern is the U-shaped (smirk) pattern of trading volume throughout the day
(e.g.,|Chan et al. (1996)), |Jain and Joh! (1988))).

Due to the inability to trade overnight, the absolute gap between any trader’s current and
desired inventory position grows overnight in expectation. Therefore, although trade is not
very aggressive in the morning in the sense that traders exchange a small percentage of the
gap (small |cg|), due to the large average gap, they still trade a large quantity of the asset.
During the middle of the day, traders are neither particularly aggressive nor have a large
excess inventory position. Finally, at the close, traders become very aggressive and close the
gap significantly, resulting in a large increase in trading volume (see, e.g., Bogousslavsky and
Muravyev| (2023)).

Figure |4] demonstrates the above reasoning. Figure [4] plots the expected fraction of the

total daily volume in each 30-minute trading bucket by computing the average volume in
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simulations of the model. To match the NYSE, we assume the trading day is 6.5 hours.
If trade volume were uniformly distributed throughout the day, you would expect about
7.7% of the daily volume in each bin. Yet, we see significantly more near the open and
close. About 17% of the daily volume is clustered in the first 30 minutes, and about 14% is

clustered in the last 30 minutes.

IV. Welfare

We now formally study whether traders are better off ex ante in a market structure with a
daily closure of some length or in a market structure that allows for 24/7 trade. We do this by
studying the aggregate ex-ante welfare of traders. Specifically, we define welfare as the sum
of traders’ ex-ante expected value functions. As each trader’s value function aggregates their
expected profits net of inventory costs, the higher its value, the more efficient the market is.
In this section, for simplicity, we assume that the initial inventory position for each trader is
zero, zi = 0, which implies that Z = 0. We assume each initial private value is i.i.d. N (0, 0?)
distributed. We will also focus on the continuous trade version of the model for simplicity.
The discrete trade version of the model has qualitatively similar welfare results.

As a first benchmark, we define the first-best (efficient) welfare as that which continuously
allocates each trader their inventory position in the competitive benchmark. This bench-
mark is what a benevolent social planner would achieve if both frictions in the model were
eliminated by making trade perfectly competitive and allowing trade to occur continuously

and 24/7. Efficient welfare is
N 2
‘ - N -1 A
we IIZE[Ve(ZZ:O,wZ,W)} _ o ( 2)(T+ ) (14>
; 8
=1

Next, we quantify welfare under the market structure with 24/7 trade. The 24/7 welfare is
N

W27 .= Z ]E[V(zi =0, w’, W)] = Nog + o2 (Nag, + g + ag), (15)
i=1

where the a;’s determine the equilibrium value function, given in Internet Appendix
when A is set to 0. Finally, we quantify the welfare achieved from an equilibrium market
structure with a market closure for a fraction A of the day. Welfare under a market closure
of length A is
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Figure 5. Welfare Comparative Statics
Above is the percent change between welfare under a market closure and welfare under 24/7
trade as we vary the length of the closure in the equilibrium of the continuous trade model.
Panel A plots this relationship for two different numbers of traders. Panel B plots this
relationship for two different rates of shocks. Both plots use r = 10%. In Panel A, A = 10.
In Panel B, N = 10.

N 1-A
1 , .
i=1

1-A
- [ N0+ o7 (Nastt) + ) +au(0) ) e (16)

where the a;’s determine the equilibrium value function, given in Internet Appendix [[A.4]
Since welfare with a closure is a non-stationary function of time, we compute welfare by
averaging across time periods in the trading day. In effect, time is an additional state variable,
and, in addition to randomizing across initial values of w® and W, we also randomize across

the initial time at which the trader begins trading.

A.  Welfare Comparative Statics

In Figure , we plot the percentage change in welfare from a market structure with 24/7
trade to welfare from a market structure with a closure. We display the percentage change

as a function of the closure length. Panel A plots the relationship for two different market

24



sizes, and Panel B plots the relationship for two different private value shock arrival rates.

In Panel A, we show that welfare changes are more negative for the larger market, par-
ticularly for long closures. In larger markets, the costs of strategic trade are lower. There is
not a substantial price impact at any period throughout the day, and, therefore, closure is
relatively more costly. In small markets, the benefit of the coordinated trade in the closing
session offsets relatively more of the cost of the closure, since liquidity is otherwise spread
thin throughout the day. In fact, there is an interior optimal length of closure near 5% of
the day. There is also an interior optimal length of closure in the larger market, although it
is very small. We will discuss the interior optima further in Section [VB]

In Panel B, welfare differences are displayed for different rates of shocks to private values.
If the shocks are infrequent, closure benefits traders. If the frequency of shocks is higher, the
lower the relative welfare with a long closure. This is due to the fact that the average gap
generated overnight between current and desired inventory widens as the length of closure
increases and as the rate of shocks increases. If there are no shocks overnight, then the
probability that your inventory position, which tends to be good at the close, is near the
desired position at the following open is high. But if there are many shocks at night, then
the position you start at the beginning of the next day will be suboptimal, which will be
costly to slowly correct in the subsequent trading days. Again, even the case with A = 100
has an interior optimal length of closure, although it is small.

We have assumed that the parameters governing the rate of shocks or holding costs
are the same overnight as during the trading day, although there may be reason to believe
they differ. In Internet Appendix [[A.2] we relax this assumption and show welfare moves

intuitively as these parameters change from day to night.

B. Is 24/7 Trading Better?
While there is some length of closure that is better than 24/7 trading in Figure , it

is not obvious whether that is always the case. Proposition 3| shows that there is always a

market design with a daily market closure of some length that is strictly better than having
trade occur 24/7.

PROPOSITION 3: There always exists a closure length, A € (0,1), such that the ex-ante
welfare of a market design with a market closure is greater than that of a market design of
24 /7 trading, where welfare is measured by Equation .
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Figure 6. Optimal Length of Closure
We plot the ex-ante welfare maximizing length of closure, A*, that maximizes Equation [16|
We assume that o and ~ are constant across day and night and use r = 10%.

The proof is found in Internet Appendix [[A.4.4, Within the confines of our model and
assumptions, Proposition [3| shows that 24/7 is never optimal for traders, and there is always
a benefit of at least a short closure.

How long should the closure be? Proposition [3| gives no guidance on that dimension.
While we do not provide closed-form expressions for the optimal length of the closure, A*,
we investigate its value numerically in Figure [f] In Figure [ we plot the optimal length of
closure as a function of the size of the market, N. We plot separate lines as a function of the
information arrival frequency, A. The plot shows that in smaller markets, those with fewer
traders or slower information arrival, the optimal length of closure can be fairly long at over
40%. However, as the number of traders or the frequency of information arrival increases, the
optimal length of closure approaches zero quickly. It is worth noting that it never actually
reaches zero but becomes economically equivalent to 24/7 trade in larger markets with a fast
rate of information arrival.

Overall, the results of this section and Figure [5| suggest 24/7 trading is near optimal in
large markets. Traders in larger markets with frequent shocks to desired positions, such as

equities, cryptocurrencies, futures, and foreign exchange markets, are better off in the model
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with near 24/7 trade. A daily closure is useful in small markets where shocks are infrequent.
Asset classes such as corporate bonds or index CDSs fit this description well. In the next
section, we calibrate the model to large equity exchanges to study the implications of our

model for recent proposals to extend trading hours.

V. Calibration

To apply our model to the data, we calibrate key model parameters for several exchanges.
Then, we quantify the welfare gains or losses from changes in trading hours. More specifically,
we calibrate the number of traders per exchange, N, and the relative volatility of shocks to
private values between the day and night, o4/0,, allowing this value to differ from 1, as in
Internet Appendix[TA.2] To estimate these parameters, we match some moments of intraday
volume in our model to the data. Given a closure length, the number of traders, and the
relative volatility from day to night, the model implies an expected volume in a given time
period as a fraction of the total expected volume in a day, as described in Appendix |Z|
We match these moments to moments from four different exchanges: NYSE, NYSE Arca,
Nasdaq, and CBOE EDGX. We select these four exchanges as the NYSE is the largest
registered U.S. equity exchange, and the Nasdaq, CBOE EDGX, and NYSE Arca have
announced plans to extend to 24/5, 24/5, and 22/5 trading days, respectively.

We need two linearly independent moments to identify our two parameters. We use the
average fraction of daily volume per exchange in the first 3 hours and last 3 hours, which we
estimate from TAQ dataﬁ The fraction of total volume that is in the first and last 3 hours of
trade helps to identify N. If NV is smaller, then two moments are closer to summing to 100%.
The ratio of instantaneous volatilities, g—:, helps to identify how much volume is in the first 3
hours relative to the last 3 hours. The higher the ratio of instantaneous volatilities, the more
volume will concentrate in the last 3 hours of trade, and vice versa. We use the calibrated
parameters to study counterfactual daily closure lengths. We fix the total daily private value

volatility per exchange to be constant by assuming o4 solves 0% = (1 — A)o? 4+ Ao? so that

"The moments we have chosen only identify the relative magnitude and not the level of volatility from
day to night. Percentage changes in welfare also depend only on the relative magnitude, not the level. To
make the computation of volume more tractable, we use the continuous trade model and assume shocks to
private values occur continuously as a Brownian motion. Assuming shocks are Brownian is a limiting case
of the jump process for private values as the arrival rate approaches infinity.

8The middle section is a linear combination of the other two moments, which provides no new information.
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Table 1
Calibration

This table compares the welfare of the current market closure to that of 24/7 trading, 23/7
trading, or the optimal length of closure by using the calibrated volatility and number of

~

traders per exchange. N denotes the estimated size of the market, and 7¢ is the relative
instantaneous volatilities during the day and night. We assume that total volatility is con-
stant across closure lengths so that o4 solves 02 = (1 — A)o2 4+ Ac?. The optimal length
of closure, A*, is that which maximizes welfare defined by Equation (16| given the calibrated
parameters and subject to the total volatility constraint. We assume r = 10%, v = 0, and
2, = 0 for all calibrations.

Current Optimal % Welfare % Welfare % Welfare
Exchange Length of N 24 Length of Change from Change from Change from

Night (A) " Night (A*) Ato23/7  Ato24/7 A to A*
NYSE 72.9% 208 1.28 0.469% 2.053% 2.057% 2.057%
Nasdaq 72.9% 325 1.32 0.480% 1.997% 2.002% 2.002%
NYSE Arca 72.9% 303 1.23 0.123% 2.128% 2.133% 2.133%
CBOE EDGX  729% 191 0.87  0.137% 2.606% 2.612% 2.612%

total volatility is constant as a function of closure lengths.

We estimate the welfare change that would occur if trading were to operate 23/7, as
proposed by 24X. This value is also close to the proposed trading hours for NYSE Arca,
CBOE EDGX, and Nasdaq. Then, we compare this counterfactual welfare to the estimate
of welfare under the current 17.5-hour closure. We also compare the welfare change from
the current market structure to 24/7 trade and, finally, from the current to an optimal
closure length. The optimal length of closure, A*, is that which maximizes welfare defined
by Equation [I6| given the calibrated parameters and subject to the total volatility constraint.
The results are in Table [l

Table [I| suggests that, in the model, extending trading hours results in an increase in
the welfare (allocative efficiency) of the market. Intuitively, as we have calibrated to large
exchanges, the liquidity coordination channel is not as important as the ability to trade for
a relatively large fraction of the day since the market is already fairly liquid. Our calibration
suggests that the NYSE and other large equity exchanges, such as the London and Tokyo
stock exchanges, should consider extending their trading hours. In thinner markets, such
as microcap equities, smaller international exchanges, or electronic corporate bond trading,

we would expect a calibration to imply that moving to 24/7 trade would decrease trader
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welfare. Interestingly, the welfare gain comes mostly from extending to 23/7, with only a
very small additional gain from going all the way to 24/7 or the optimal length of closure.
It is worth noting that the optimal length of closure is an interior length of 2 to 7 minutes a
day, which is very short. In Section [VII, we further discuss how additional forces may affect

these implications.

V1. Heterogeneous Information

In this section, we summarize an extension that allows for heterogeneous fundamental
information regarding the dividend. The main results are analogous to those in previous
sections, suggesting that our findings regarding the effect of a market closure on liquidity
and allocative efficiency are robust to the consideration of informational frictions. The
introduction of an information problem is done by adding two components to the model: a
stochastic liquidating dividend and private signals regarding its payoff. These components
generate a learning problem, discussed below, in addition to the inventory management
problem detailed in previous sections.

The liquidating dividend is now assumed to evolve according to a continuous-time random
walk. Jumps in the dividend v, are assumed to coincide with the random jumps in the private
value shocks and are N(0, %) distributed. Each trader receives private signals about these
jumps. If a jump in the dividend level occurs at time ¢, the signal is given by SZ = vy —v_+€,
where ¢ N(0,02). If jumps occurred at dates t; < ty < - -+ < t}, < t, trader 7 forms a signal
St = Zle S’;J at date . Assume these normally distributed shocks are all independent of
each other and of all other shocks in the model. All other aspects of the model are the same
as before.

We focus on daily-periodic, linear, and symmetric strategies and conjecture that equilib-

rium demand schedules in period k take the following form:

Di (2", w', S*, p) = ap + bpp + cpz’ + fu(w' + ASY).
Based on these demand schedules, in equilibrium, any investor will observe W + AS directly
from the price. Note that there is no time dependence in A in our conjectured demand
schedule. Along with the assumption that both the dividend value and private values are

random walks, this is an important assumption. If there were time dependence in A, in-

vestors’ conditional expectations of the dividend would no longer be a simple function of
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a few state variables, namely w?, S?, and W + AS. In particular, time dependence in A
would effectively force beliefs to be a state variable of the problem. Any investor ¢’s beliefs
would depend on other investors’ beliefs, which in turn depend on investor i’s beliefs. This
loop iterates, leading to an infinite regress of beliefs problem, which the literature on market
design in dynamic settings has struggled to resolveﬂ

Given the above demand schedules, each investor solves a learning problem. Traders
observe 2%, w', S* and W + AS, from which they infer the level of the dividend. Define the
information spanned by these signals to be the information set Z;. Then, conditional beliefs
at time ¢t = kh of the value of the dividend are

Et[wi + Ut|Ii] = U); + Blsz + BQ(Wt + AS’t),

for some constants, By and By. B; and By unsurprisingly depend on A, as the relative
weight of the signal from the price on W and S affects the learning problem. Conversely,
A depends on B; and Bs, as optimal demand schedules depend on beliefs. This fixed-point
problem leads to a straightforward nonlinear equation for A.

We provide the solution to this model in the Appendix [B] It is fairly straightforward to
show that if the learning problem goes away, in the sense that B; = By = 0, the equilibrium
reduces to that described in Proposition . Defining s' = X (w' + AS?) for a constant o, with

a slight relabelling of the demand function, equilibrium demand is given by

Dy (Pin) = (Zlih - (%(%h — Spn) + Z))

st is simply a weighted sum of trader ¢’s private value and their signal. « is an endogenous
measure of the amount of adverse selection in the market. When « = 1, there is no adverse
selection, and traders learn no new information about the asset’s payoff from the price. As
a decreases, they put more weight on the signal inferred from the market and less on their
own information. We will show that the main result of this paper still holds when learning
is introduced. As the trading day comes to an end, traders trade aggressively towards their
desired allocations. As they do so, price impact decreases, further improving liquidity and
the incentives to trade aggressively in the final period.

We plot trading intensity and welfare in Figures [7] and [§] We consider the model of

this section alongside two models: one in which o, is set to 0, thereby eliminating adverse

9See also [Du and Zhu (2017b)), footnote 6. For recent progress, see Rostek et al.| (2025).
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selection, and another with adverse selection but without market closure. In Figure [7, we
consider trading intensity by plotting H§:0(1+cj) as a function of k. This quantity measures
how much of the gap between a trader’s initial inventory and initial desired inventory has
closed between the start of the trading day and time ¢, assuming no shocks have arrived in the
interim. For both models with closures, trade is most aggressive in the final period. Perhaps
unsurprisingly, trading intensity with adverse selection is slightly lower than without. Traders
avoid price impact as purchasing the asset increases others’ beliefs about the liquidation
value, making them even less willing to sell the asset. It is worth noting that this slower
trading is primarily due to heterogeneity, rather than simply uncertainty. In particular, in
a model in which signals are public, trading intensity is the same as in a model with no
uncertainty about the dividend, due to the risk-neutrality of the traders.

In Figure [§, we see that market closure continues to have consequences for welfare.
Welfare is larger with a long closure if the rate of information arrival is sufficiently low.
Moreover, if the number of traders is sufficiently small, the results of the left panel suggest
a closure of roughly 10% of the day is optimal. Relative to Figure [5] welfare with a market
closure is slightly better relative to welfare under 24/7 trade when agents have heterogeneous
information. This is not particularly surprising since the coordination a closure provides near
the end of the trading day is relatively more important when liquidity is already spread thin
due to heterogeneous information. Overall, the primary mechanisms of this paper are present
when there is heterogeneous information regarding asset values.

Although not the focus of this paper, it is worth discussing the potential implications
the model may have for price efficiency. One can think of price efficiency as the magnitude

of a trader’s conditional variance of the dividend given their signals and the price, relative
Vart (v,|L)
Var(vt)

whenever trading opens, as traders infer information from the price, and increases on average

to the unconditional variance of the dividend, that is, This value jumps down
whenever the market closes. Thus, market closure hinders price efficiency simply because
prices are not observed overnight, although price efficiency returns to its level with 24/7
trade as soon as the market is reopened and prices are observed. Although worth pointing
out, this is not a particularly surprising finding, as the information structure we consider is
simple enough to make the model tractable. Extensions in which some traders had higher-
quality signals than others might yield interesting results. Implementing extensions with

more interesting information structures is not a trivial problem. The infinite regress of
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Figure 7. Trading Intensity with Heterogeneous Information
This figure plots trading intensity for various regimes throughout the day. The y-axis is the
expected percentage of time 0 excess inventory left at time ¢ in the day. If there is a closure,
its length is 31.25% of the day. The parameters are K = 16, N = 100, and r = 1/30.
Moreover, op =0 =1, 0. = 0.1, and A = 1. If information is homogeneous, o, is set to 0.

beliefs problem mentioned above, which arises even with relatively simple complications
of the information structure, makes tractable extensions challenging to formulate. In the
absence of these difficulties, the impact of market closure on the dynamic interaction between
allocative efficiency, liquidity, and price efficiency with heterogeneously informed investors

promises to yield very interesting research, which we leave to future study.

VII. Discussion of Other Policy-Relevant Forces

Our model studies welfare in a model of inventory management and price impact, a first-
order consideration in terms of trading costs for large traders. In fact, Frazzini et al.| (2018)
finds that price impact is the largest trading cost large money managers face, and it leads

traders to break up larger orders into child orders that take on average 2.7 days to fully
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Figure 8. Welfare Comparative Statics with Heterogeneous Information
Above is the percent change between welfare under a market closure and welfare under 24/7
trade as we vary the length of the closure, in the equilibrium of the continuous trade model
with heterogeneous information. Panel A plots this relationship for two different numbers of
traders. Panel B plots this relationship for two different rates of shocks. Both plots assume
op=0c=1,0,=0.1, and r = 10%. In Panel A, A\ = 10. In Panel B, N = 10.

execute. In this section, we discuss some additional forces that may be directly relevant
for exchanges or policymakers considering modifications to trading hours. Although not
explicitly modeled, we argue that the consideration of many of these forces would likely
reinforce our main results. Namely, in large equity exchanges, our calibration suggests
that extending hours will be beneficial for large traders. More generally, a daily closure
coordinates trade, implying the optimal closure is non-zero, and may be large in smaller

markets.

A.  Exchanges’ Incentives

The social planner perspective we take allows us to study what traders prefer in counter-
factual market structures, and whether a regulator should approve a given change to trading
hours. Yet, exchanges ultimately determine their trading hours. To study the incentives
of an individual exchange to change its trading hours, we model the exchange as a player

who chooses the length of closure to maximize expected volume before any trading occurs.
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One major source of revenue for exchanges is volume-related fees. Therefore, the choice of a
volume-maximizing closure is an approximation of their decision problemm

Internet Appendix[[A.4.2]examines this decision problem. In general, the optimal closures
from the perspectives of a trader and an exchange are similar. Volume is maximized with
one trading session a day in markets with few traders, but for medium to larger markets,
24/7 trade maximizes volume. Table studies the decision problem specifically in the
calibration of Section [V] The calibration suggests that extending trading hours will increase
volume, since these exchanges are large. It is worth noting that this result is not entirely
obvious. Despite a large percentage increase in trading hours from 6.5 hours a day to 23
or 24 hours a day, the percentage increase in trading volume is much smaller due to the

endogenous response of trading strategies.

B.  Market Fragmentation

While the analysis discussed above suggests that a single exchange’s optimal decisions
tend to coincide with the optimal market structure for traders, in practice, there are multiple
exchanges. This leads to various complications. Exchanges compete with one anotherﬂ and
traders can also split orders across multiple exchanges. |Chen and Dufhie (2021) model frag-
mentation in a demand-submission game, and they introduce noise traders on each exchange
so that prices across exchanges are imperfectly correlated. They are only able to solve the
dynamic model when the number of exchanges is set to its optimal value and trade is efficient
(the asset is perfectly reallocated after each trading session). If trade is perfectly efficient,
there is no room for the benefits of a daily closure. When trade is not perfectly efficient
and there is scope for benefits of a closure, there is the well-known problem of an infinite
regress of beliefs, first described in [Vayanos| (1999)), which renders the solution of the model
intractable.

Fragmentation may help reduce the risk of holding inventory if exchanges do not perfectly
coordinate their trading hours. Indeed, the CME Globex index futures market already

operates 23/5, which would allow traders to hedge systematic risk during the current daily

190ther revenue sources such as co-location, listing and maintenance fees, and market data fees are all
more valuable if volume on that exchange is higher.

"The London Stock Exchange Group is considering extending trading hours to near 24/5 to com-
pete with U.S. exchanges, as firms have moved their primary listing to U.S. exchanges, which
have already proposed extending trading hours, https://www.theguardian.com/business/2025/jul/21/
london-stock-exchange-24-hour-trading-boost-market.
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market closure. Furthermore, many alternative trading systems (ATSs) operate outside of
current market hours, allowing some trading to occur. While this sort of fragmentation is not
directly modeled, it could be captured in reduced form through a lower marginal holding cost
parameter overnight, ~,. For instance, hedging in index futures contracts will reduce risk
exposures to systematic risks in equities and derivatives markets, although it is important
to note that it will not fully eliminate risk. Hedging using index futures, for instance, can
be costly and imperfect due to price impact (e.g., Rostek and Yoon| (2024)), remaining
idiosyncratic risk in equity markets, and remaining unhedgeable risks in derivatives markets
(Garleanu et al. (2009)). Changes in the overnight holding cost are considered in Internet
Appendix [A.2] Our calibration in Section [V] assumes that holding costs are the same
overnight as during the day, which is, if anything, a conservative assumption. Increasing
the overnight holding cost, which is likely more realistic, would decrease the optimal length
of closure, reinforcing our finding that longer trading hours would be welfare-improving for

traders on large equity exchanges.

C. Firms

While we focus on the secondary market, many of the firm’s actions are influenced by
trading hours. Historically, firms prefer to release news and earnings and hold earnings
calls outside of trading hours to minimize short-term volatility while investors process infor-
mation. Many of the exchanges that have proposed extending hours suggest a short daily
closure, perhaps in part to accommodate this preference of firms and retain their listings.
In our model, shocks to private values or the common dividend value in the heterogeneous
information extension can be viewed in part as the result of firm announcements. To ac-
count for announcements occurring during a closure, our calibration allows the magnitudes
of shocks during the day and night to differ. Moreover, as we vary the length of closure in our
calibration, we fix the total daily volatility of shocks constant, so that we effectively consider
counterfactuals in which daily firm decisions are held constant. We further study the impli-

cations of heterogeneity in volatility between the day and night in Internet Appendix [TA.2]

D. Closing Prices

The closing price of a security has become an important component of the financial

system. Closing prices are used to calculate the Net Asset Value (NAV) for mutual and

35



open-end funds, for the settlement of many derivative contracts, and for calculating margin
and collateral requirements. Moving to 24/7 trading would require redefining this reference
point. Our model predicts liquidity is spread more thinly throughout the day when trade
is 24/7. Any higher price impact at a new reference point could result in larger price
swings, reducing price efficiency. This rationale supports retaining a non-zero daily closure
to concentrate liquidity and improve price robustness at the close. We discuss the information

structure and its relation to price efficiency in the current model in Section [VI]

E. International Access

A common rationale for extending hours is to accommodate demand by international
investors. Section [VITA] finds that, for liquid exchanges, extending trading hours increases
daily volume. However, that analysis does not account for the potential endogenous entry
of additional traders if trade were offered during their local business hours. Indeed, recent
studies suggest that, at least for some investors, the timing of their trades is related to local
business hours. For instance, |[Eaton et al. (2025) finds that 80% of ATS volume between
8:00 PM and 4:00 a.m. EST comes from Asia-Pacific investors. Further, |[deHaan and Glover
(2024)) finds that retail investors just on the west side of a time zone trade less than those
just on the east side. In our model, as the number of traders increases, the gains from
liquidity coordination decrease, shortening the optimal closure. Endogenizing access would
likely strengthen the case for extended trading, though it would also create heterogeneity in
agent types, leading again to substantial modeling challenges related to heterogeneity and
infinite belief regress (e.g., (Vayanos, 1999)), as the distribution of inventory across types

would become a state variable.

F.  Regulatory

As noted by many exchanges, extending hours would require regulatory and infrastructure
changes. The Depository Trust and Clearing Corp. (DTCC) and securities information
processor (SIP) are working to support trading beyond current business hours. These changes
are necessary so that securities law, such as Regulation National Market System (Reg NMS),
which mostly do not apply overnight, can be followed. For example, the Order Protection
Rule (Rule 611 of Reg NMS) does not currently apply overnight, as there is no NBBO

36



disseminated by the SIP[?] A model with infrastructure adjustment or legal compliance
costs would presumably increase the minimum expected profit an exchange would require
to be willing to extend trading hours. However, extending regulatory protection, rules,
and market infrastructure to non-traditional trading hours could benefit execution quality
relative to the current paradigm, in which there is very little oversight and structure for
executing overnight orders through ATSs. These countervailing forces suggest the net effect

of incorporating regulatory factors in a framework such as ours is ambiguous.

G. Retail

deHaan and Glover (2024) finds that increased trading access leads to excess trading and
reduced capital gains for retail investors, though the net welfare effect is not obvious after
accounting for, for example, the subjective utility retail traders derive from being able to
trade. On the other hand, retail traders already trade overnight through brokers such as
Robinhood, Charles Schwab, and Interactive Brokers. Extending legal protections to these
trades may improve execution quality.

More generally, over 90% of retail marketable orders are internalized by wholesalers off-
exchange (Gensler} 2022), suggesting that changes in exchange hours will primarily affect
retail traders indirectly via their effect on wholesalers. If the allocative efficiency gains in
our model are passed on to retail traders through better pricing or execution, our calibration

suggests that extended trading hours would benefit retail traders on large equity exchanges.

VIII. Conclusion

This paper studies the effect of daily market closures on liquidity and allocative efficiency.
Market closures coordinate trade at the end of the trading day, and this coordination gener-
ates social benefits that can outweigh the costs of the restrictions closure imposes on trade.
Although in our model there is a non-zero length of closure that always improves welfare
relative to a market structure with 24/7 trade, for large markets with many traders and fre-
quent shocks to private values, this optimal length of closure is very short. Our calibration
suggests that a short closure of a couple of hours or less would improve welfare relative to

current trading hours in large equity exchanges.

2However, Best Execution and Interpositioning (FINRA Rule 5310) and the Manning Rule (FINRA Rule
5320) do currently apply to overnight trades.
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Appendix

A.  Proof of Propositions 1-2 and Corollary 1

This appendix proceeds as follows. First, we set up the problem, which describes equi-
librium. Then, in Appendix we show the solution is unique after imposing a trembling-
hand refinement and characterize the solution, proving Proposition [T Appendix proves
Corollary [I] and Appendix specializes to the case in which A = 0, so that there is no
overnight period, to prove Proposition [2]

Under the assumption of linear demand schedules, and based on the form of the payoffs,

the value function will be linear—quadratic:ﬁ
Vi, w! W) = ab+ab 27 +asw’ +aW+al ()2 +ak (w2 +ag (W)?+ab 27w +-af 2/ W+-abw! W
First, we characterize its solution.

Let us assume that b, > 0 for now. Then we will address what happens when b, = 0 at
the end of this section. The Bellman equation for every time t = kh, where t < T, is

(I—e ™)y

Vi(2?, w?, W) = max {—Djp?; + (=™ + D)+ w!) - (27 + D7)?
DI r

+eTh [af)“ + a1 (2 + D) + ab T + a’§+1W

) ) . — o2
ai (27 4+ D7) 4 af T ((w?)? 4 Ao?) + a4 —](\7[ )
o o 2
+af T (27 + DY 4 afT (2 4+ DIOYW + ab T (W W+ %)] } :

and for the last period, by periodicity, it is

V(2 w?, W) = max {=D7pp + (1 = e ") (27 + D)(v + ')

(1 — e H8)y, 2 hA+A) [0 4 0/, j 0,7 1 0%
- (27 + DI)? 4 e rhIF )[a0~|—a1(z3+D3)+a2w7+a3W

2r
4 D ' . 1+ A)o?
a(z) + D7) + ad((w’)? + A(1 + A)o”) + ag(W* + W)

130ne can apply a contraction mapping theorem to show the uniqueness of the solution to the trader’s
decision problem given the other trader’s demand functions. First, one can restrict the decision space
to a compact subset of the set of linear demand functions. Value iteration will map the set of bounded
continuous functions into itself, assuming a Feller-type condition regarding the continuity of the conditional
expectation of the continuation value and assuming boundedness is defined using a weighted norm of the
form || f|| = sup |f (¢, z, w, W)e*”(z’w’w)”g\. Then, using Blackwell’s conditions along with the Contraction
Mapping Theorem, one gets uniqueness on any compact subset of linear demand functions.
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, L . - = A1+ A)o?
+a$(z]+D])w]+ag(zJ+D7)W+ag(w]W—|——( J;V )o )}}

The FOC for optimal demand in the first 7" — 1 periods is then

) ) 1— —rh
0=—pf =MD+ (1 —e ™) (v+u) - (GT—)%

() + D7)
+ e ™Mkt 4 20k (27 4+ DY) + aE Tl 4 aE T,
and in the last trading session of the day

1— 6frh(1+A) )

0= —ps — ApD? 4 (1 — e ™M) (y 4 ) ! In (3 4+ Do)

.
+ e M6 + 2a(27 + DI) 4 aduw’ + adW].

9%, 1
where A, := gt = IROEVE Assume

Dj, = ar + bppy + cr?? + fruw’
Market clearing implies the equilibrium price is

_ak + CkZ + kaVt
by, ’

Pt =

and equilibrium demand is

D} = cx( = 2) + fu(w] = W).
Substituting these expressions into the FOC,

a + CkZ + ka 1

b + bk<N — 1) (ck(zj - Z) +fk(wj - V_V))

(I—e ")y

+(1—e™)(v+u) - (1 +cp)2d —enZ + fe(w’ —W))
L rh [alchrl + 205 (1 + )2 — euZ + fr(w?’ — W) + af+lw’ + QI§+IW} =0,
and

ar + CTZ + fTW 1
+
br br(N — 1)

(er(z! = 2) + fr(w’ — W)

1— e—rh(1+A))

+ (1 — e MR (g 4 w?) — ( 1+ o) — erZ + frlw! — W)

+e M [ +2a((1 4 or)2 — erZ + fr(w — W) + adw’ + agW] = 0.
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Grouping common terms,

ay Jg:kZ B bk(]c\;;Z_ 5 (1= e+ (1— e—:l)’chkZ 4ehgh Tl 90 TRkt 7 — ()
bk(]\(‘;k_ - (1-— e—rh)r’}’d(l + cx) 20 aE (1 4 ) = 0,
ﬁ e - (1— errh)%fk 426 b g e b — g,
g_: B bk(]\];k_ - N (1-— errh)%jfk e Thak L 4 ekt — 0,

and similarly at period 7. We show in the Internet Appendix that of + af = 1 and
hence fr = —b; by the 3rd and 4th FOCs. This leads to the following expressions for the
parameters describing demand functions:
r(N—=2—(N-1e ™1 -ai™))
TN D (e — 1) + 2re—rhak )

24 (b — e — N(1+e(ak" 1)

L = ,
k (N =11 +er(af™ ~ 1))
fk _ 7"(1 4 e—rh(al;—i-l . 1))Ck
Ya(e=™ — 1) + 2re=rhaft’
N —-2)Z th—1)Z _
ay = _Ck( ) T b v(efrh —1) - efrhalchrl + cryale ) + 2€frhckZalz+1 .
N -1 r
The expression for ¢, simplifies to
1
Cr = — 1.

(N =1)(1 +e™(a7™" — 1))
Thus, given the coefficients describing the value function, the demand functions are known.

Let us now characterize the value function. Returning to the Bellman equation, we have

V= (sl = 2) + fulw? —W)GE + 22 + 240
+ (1 —e™((1+ )2 — enZ + fe(w’ —W))(v + wd)

B W(((l + ) —aZ + fyo(w! —W)))?
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L erh [ i1y ak+1((1 + Ck)Zj _ CkZ + fk(wj W)) + akJrlu)j + a’gﬂﬂ_f

T ;
(L4 02 — 6 + fulwd = W) + ab¥ ()4 Aa?) + k172 4 27
+aE T (14 ep)2? — e Z + fro(w? — W))w!
2
+ag™ (L + )2 — aZ + filw? = W)W + ag™ (w'W + )\%)

Matching coefficients in the Bellman equation,

_ 27 _ 1 — e
S LS R A Gt A R Y
bk 2r
—rh t+1 —rh k+1 rh k+1 272 —rhy, +1 2 —rh_k+1 Ao? —rh_k+1 Ao
+e Ma, —e el +e” 220 te Ao” + e Mag W—Fe g
cray + 27 1—eT _
a’f = kkb—k + (1 — _Th>(1 + Ck)l) + (T—),yd(l -+ Ck)CkZ
k
+eo Th(1+c ) k+1 2671“/1(1_’_6]6) kZak+1
a c _ 1—e"h
ah = % + %Z + (1 —e ™) (frv — e Z) + Mckka + e fral Tt 4 emrhght!
k k
e rh2alj+lckfk2 e_rhalfrlckz
1 — —rh _
ay = —fzak - 2% — (L =e)frv - wekﬁﬂ — e fray™t + e g™
k k
+ e_rh2alj+1ckfk - e_’"halgﬂckz
1—e
ak = ——( o )Vd(l + i) e a1 4 ¢p)?
1 — —rh
alg — (1 . efrh)fk . ( ;T )/Ydflz + efrhalz+1flg + efrhangl frh +1f
2 1—e " Yd e " —r e "
e A F T )
by, 2r
k —rh (1—e")y rhk+l rhltl
a7:(1—eT‘)(1+ck)—+(1+ck)fk+26 (1—|—Ck)fk+6 (1—|—C)

v afr (L—e™)yy

ay =tk a)fe =20 (L e fi+ el (L4 )
1 — e—'rh
a = f, (g—: ey U ; VUi o gemrhat i — e Thakt e‘rha’s“*l) +e Magtt

Now let us address what happens when b, = 0. In this case, trader j is allocated 0 demand

in equilibrium in period k, and it is straightforward to see that the value function coefficients
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obey the same set of recursive equations as above, simply with ay, ¢, fx, fx/br all set to 0.
The joint solution of these recursions, along with the expressions for ay, b, cx, fx, char-

acterizes the equilibrium. We give simplifications of these recursions in Internet Appendix

TA.5l

A.1. Uniqueness, Existence and Properties of the Equilibrium Solution

In this section, we begin by providing properties of a7, ¢;, and fr that must be satisfied
for trade to occur at a date k. These properties show that the existence of a non-zero trade
equilibrium at date k can be reduced to a simple condition on al;ﬂ(m()d .

Using this condition, we formulate a recursion for a; and show it has a unique solution.

There can be other equilibria, but by the unique solution to this recursion, they must
occur in periods in which there is also an equilibrium in which trade occurs. We then proceed
to show that these equilibria do not satisfy our trembling-hand refinement.

Last, we conclude by providing some additional properties of the solution, which prove

properties 1-4 in Propostion [I}

Properties required for trade in linear demand schedules:

This section first shows that the equilibrium ¢, f and a7, a4 must satisfy certain restric-
tions for trade to occur at a given date, then discusses the existence of the solution.

Suppose we are at period k < T. The case k = T is analogous. We occasionally drop k
subscripts to ease notation. Suppose all other traders submit demand curves with negative
slope b, at period k.

The SOC for demand optimization is given by

1 (I—e™) h_k
. 2 —r +1 <0
BN —1) P
First, note since f/b = —1, we must have f > 0 in equilibrium. By the third FOC above,

this fact combined with the SOC implies

(1—e ™) +e ek > 0.

Then, by the expression for f, both ¢ and y4(e~™ — 1) + 2re "™"af™ must have the same

sign. Now, the second FOC implies

Ck (1—e a1+ c) —rh_k+1
= -2 1 .
be(N — 1) r a1+ )
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If ¢ < —1, the LHS is positive while the RHS is negative. So ¢ > —1. This fact implies, as
hinted at in discussions above, that a; > 0 in an equilibrium with trade at k.

rh_l

Now since ¢ and v4(e~ )+ 2re~"hak ! have the same sign, we can analyze y4(e™™ —

1) 4 2re "™ a¥™ to determine the sign of c. Let’s consider the case k = 0. Other cases are

similar.
1— e—rh
aj = _—( 5 )fyd(l +co)? + e ay(1 + cp)?
1— e—rh 1— e—rh
= ——( 5 ol (14 co)? — —( o )%le_rh(l ) (1 +c)? + e Ma2(1 + c)*(1 + ¢1)?
(1 . e_rh)’}/ k t k+1
_ _Z—Td Ze—trh H(l + Ci>2 + e—(k+1)rhalz+1 H(l + Ci)2
t=0 =0 1=0

for £k < T — 1. Tterating to £ = T and beyond is similar. In order for positions to be non-
explosive functions of past positions, based on the expression for equilibrium demand, we
only consider equilibria that imply Hfzo(l +¢;) — 0 as k — oo. Note that this also implies,
taking the limit in the expansion above, that a < 0. One can show a% < 0 similarly.

This, in turn, implies ¢ < 0 if trade occurs at period k. It’s worth noting that ¢ < 0 will
imply Hfzo(l + ¢;) — 0, where one imposes periodicity in the limit in the obvious way.

Thus, we've shown that in equilibrium, a7; must be positive, and ¢ must be between —1
and 0.

Conversely, if solutions with positive a; and ¢ between 0 and -1 exist and satisfy the FOCs
above, this then allows for a unique solution for a4, since its recursion is linear. Solutions
of a7, c,ay yield solutions for b and f. The corresponding solution for b, will be negative in
periods in which ¢ is negative, since we show below that the recursions above imply ¢ /by
is a positive constant. Moreover, we show below that a;/b; = v, implying a solution for b
yields solutions for a. The remaining recursions for the value function are linear and have

simple unique solutions. To sum up, solving the model reduces to solving for a;.

Existence and uniqueness of a particular equilibrium:

Let us adjust the recursions for a; above to be more precise regarding in which periods
there is no trade. Once the equilibrium value of a; is determined, the rest of the parameters
determining the equilibrium can be pinned down as described above. In particular, we will

frequently make use of the fact that the expression for ¢; in periods with trade must be the
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k+1
7

same function of a as before.

Note if (N—1)(1—efr1h+efrha’;+1) > 1, the arguments above imply there is no solution for
trade at k£ in downward sloping demand curves, because the solution for ¢, and hence by
would be positive. This condition reduces to

N —2
e~"h(N — 1)’

so that we can redefine the recursion for a?“ when we don’t require trade every period to

abtt <1 -

_ ,—rh —rh k+1 e k+1 _ N—2
e 1—e ™4 e "ay ifa;™ <1 RN T
k—
1 okl _ _ N-2
(N—1)2(1—e—"hte—rhakTT) ifa;™ > 11— =
. 1
= min{l — e + e"al ™! }.

T (N —1)2(1 — e"h + erhahtl)
Define f to be the right-hand side of this expression as a continuous, piecewise-defined func-

tion alfrl. This recursion corresponds to the model in which, if there is no trade equilibrium at

k in downward-sloping demand curves, there is no trade at k. If there is a trade equilibrium,
the corresponding value of a¥ is selected.

Moreover, f is a contraction from [0,00) to itself. One can argue this as follows. f is

N-2
e~Th(N-1)

" and on the second region, its slope is decreasing and maximized when

%, 0}. Its slope at this point is also strictly less than 1. Therefore, it

is straightforward to see that f is a contraction.

increasing if att' < 1 — and decreasing otherwise. Moreover, on the first region,

its slope is e™"

t+1 _
ar™ = max{l —

Then, we can iterate the recursions for a; T times to write a} as the solution of a fixed
point problem, by periodicity. Note that the recursion at period T" must be appropriately
adjusted to account for the overnight period. This fixed point function is the composition
of functions that are contractions, and hence af is the fixed point of a contraction mapping.
Thus, by the Contraction Mapping Theorem, there’s a unique solution to a% and, therefore,
the sequence of a;’s.

Hence, there is a unique solution to the problem for which trade at any period is only
abandoned if there is no equilibrium in downward-sloping demand curves in that period.
Below, we show that the multiple equilibria that arise when traders can submit demand

curves equal to 0, even when there are equilibria that involve trade in that period, do not

survive the trembling-hand refinement. Therefore, the fixed point problem described in this
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section characterizes the equilibrium of this paper.

Trembling-hand refinement:

In this section, we will show that a form of the trembling-hand refinement rules out
equilibria in which players choose to submit uniformly 0 demand curves in periods in which
there is also an equilibrium in which trade occurs. In conjunction with the uniqueness result
of the previous section, this implies that under the refinement, there must be a unique
equilibrium.

Consider the optimization problem of investor j at a period ¢t < Th. The case t = Th
is similar. Suppose there are two equilibria at time ¢, one with zero trade (and uniformly 0
submitted demand curves), and the other with non-zero trade. Suppose that with probability
q the N — 1 other traders play the non-zero trade equilibrium in the current and future
periods. With probability 1 — ¢, the other N — 1 traders play the equilibrium with 0 at time
t in current and future periods. The trembling-hand refinement we consider will require that
as q goes to 0, the optimal demand submission of trader j at time ¢ also converges to a
demand submission uniformly equal to 0.

We consider a trembling-hand refinement in which players tremble simultaneously. If
players tremble independently, there is a non-zero probability that only one player submits
a non-zero demand curve. In two-player demand submission games, the non-existence of
linear equilibria is well-known (e.g., Du and Zhu (2017a)). To avoid these issues, we assume
simultaneous trembling.

The optimization problem for every time t = kh, where t < T, is

(1—e ")

i piy2
2r (Z+ )

max {E {—D"er (1—e ™) (2 + D) (v +uw') —

+€7Th VkJrl(Zj + DJ’ w€k+1)h7 W(k+1)h):|:| } ;

where the expectation is over which equilibrium the other traders choose, and f/kﬂ denotes
that the continuation value may differ depending on the equilibrium chosen by other players.
Note, demand curves are only contingent on the price, not, for instance, which equilibrium
other players might tremble to.

Allocations are constrained such that the market clears. Therefore, we can formulate the

optimization problem in terms of choosing the price based on the residual demand curve to
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simplify the exposition. In particular, trader j’s allocation is constrained to be the residual
demand of the other N — 1 traders, D7 = — 3~ . D'(p). Therefore, how much they demand

is equivalent to the price they choose. Using this, the optimization problem becomes

pY Dip)+(1—e ™) = D'(p))(v+u)

Vi(2,w! W) = max {

i#] i#]
(1 —e j ZDZ o Th t+1 + ak+1 ZDZ k+1w] + ak+1W
1#£] i#j
. o2
~k+1 Dz ~k+1 712 2 k417772 | O
= (w)? + \o?) + ak (W+N)
i#£j
LAk — ST D) + Ak — ST D)W+ G (W + /\;‘2)
i#] i#] N ’

where again, tildes denote uncertainty about the continuation value. In the equilibrium in

which all other traders submit 0, 3, . D*(p) = 0, so that the problem simplifies to

mgX{q<pZDi(p)+(1— M =Y D) (v +w)

i#j i#]
1— rh ) . —
_( € P)/d ZD'L —7‘ a?(f)—i—l k+1 Z Dz k-‘rlw] + a§+1W
i#] i#]
. A
k:+1 ZDZ k+1<<wg)2 + )\0_2) + alg+1<W2 + %)
i#]
A
k+1 ZDZ w] + ak+1 ZDz W + ak-l—l(wJW + %)] )} ,
i#£j i#]

where the continuation value coefficients correspond to the equilibrium with non-zero trade
today. This is then simply the optimization problem in the equilibrium with trade scaled by
q. Thus, trader j’s demand submission will simply be the same as that in the equilibrium
with non-zero trade, irrespective of ¢, as long as ¢ > 0. Intuitively, since their allocation
is independent of the demand schedule played in the zero-trade equilibrium, the trader will
behave as if the tremble equilibrium is all that matters, as that is the only instance in which
their submitted demand schedule matters. One can repeat the arguments above with very

slight modifications to show that the equilibrium with trade, when it exists, does in fact
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satisfy the trembling hand refinement.

Properties of the equilibrium:

It will facilitate the exposition to define quantities a¥ for k =T + 1,7 +2,...,T + A,
where af =1 — e + e"”hagkﬂ)(md T for k=T +1,T+2,....,T+ A. Then al =
(N71)2(1fe—}"h+e—’°ha$+1) if there is trade at T and 1 — e~ "™ 4+ e‘rha?rl otherwise.

The ordering of the properties here is different than the listing of the properties in Propo-

sition [ We begin by describing these differences.

Properties (1) and (2) in this section provide some basic properties regarding the solution.
We refer to these properties as “oscillation” properties throughout. They prove property 4
in Proposition [I}

Properties (3), (4), (5) show properties (1) and (2) in Proposition [I} by showing that
there must be a contiguous sequence of periods with trade, followed by a sequence of periods
without trade, and followed by trade at T

Properties (6) and (7) prove some simplifications of the solution which lead to the ex-

pressions in property 3 of Proposition [3]

(1): The first property is that if one a¥ is larger than the long-run solution (i.e., the solution

in which the market is always open), the “next” one, a’?’l, must be smaller. To see this,

define
1

flo) = (N—=1)%(1—erh e rhy)

The long-run solution solves the quadratic equation given by f(zq) = x¢. Since for z > 0, f

is decreasing in x, if © > o, y = f(z) < f(x9) = xp. So the next iteration y is less than z.
The opposite happens if x < xy. So solutions oscillate around the long-run solution when

the market is open.

(2): Second, we show that the size of the oscillations decreases as one gets further away
from the end of trade. To do this, note if a¥ = z, where k # 0, 1,

i = f(f(2)).

Note the long run solution x, solves the quadratic equation xo = f(f(x)). After simplifying,
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we can write this equation as
0=1—(1—e")(N—1)%x)—e™N —1)%2

Note that the long-run solution xy we care about is the positive root. It is straightforward
to show, as with our solution for a; above, that one root is positive and one is negative,
and the quadratic function defined by the right-hand side above is decreasing in the positive

reals. In particular, if 0 < x < xq,
1—(1—e™)(N -1 —e™(N—1)22%>0,

which by reversing the same operations that led us from f(f(zo)) = x¢ to the quadratic
equation, implies f(f(z)) > x, so that a¥? > k. Similarly, if z > x¢, then a¥™2 < a%. So
the oscillations decrease in magnitude as one moves further from the end of trade.

We illustrated these first two properties for a;. The correspondence between a; and ¢ and

b implies analogous results for c.

(3): Let us spend some time characterizing when trade will occur. Note, by the above, for
trade to occur at k € {0,...,T}, we need

N —2
k+1
1—— .
“ >( e—rh<N—1>>

Denote the right-hand side of this inequality by ab. If @} < 0, trade will occur in every

trading period, so we can assume a’ > 0. Now, note if trade occurs at k + 1,

art! = 1_ oh o kt2y
(N —=1)2(1 —e"h + e rhait?)
Then, re-writing the inequality above by substituting this expression for a¥™, we must have
S (V-1 —e") +eM)(1—e)

k+2 N—1
! (N=1)(1—e)4eh)erh

for trade to occur at k if it occurred at k 4+ 1. This inequality uses the assumption that

at > 0. Then, call the right-hand side of this inequality al.

Now, note if a]7€+1 € [a, a?], trade will occur at all periods in the day, using the oscillation

properties shown above. To see this, note if trade occurred at k and a; < a?“ < al, then

a7 > ab > ab, so trade will occur at k — 1, and so ¥~ > @l for all earlier periods in the day.

Similarly, if trade occurs at k£ and a; > aé”“ > ab, then by the oscillation properties, and

ast1=t > g for all earlier periods in the day.
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Moreover, if there is trade in two consecutive periods, there must be trade in all prior
periods. This is because if there is trade in two consecutive periods, it must be the case that
ak™ € [db, ak] if k is the first of the two periods. If af™ < a!, there can’t have been trade
at k, and if af™ > al, by the oscillation property, a5*? < af < al, and so there can’t have

been trade at k + 1.

(4): Now let us show that there cannot be a period without trade followed by a period
with trade followed by another period without trade. In other words, if there is trade in

a period which is followed by a period without trade, all prior periods must have non-zero

trade. Note if there isn’t trade in period k£ > 2, we must have a?“ < (1 — %) and
soak =1—e 4 e ekt < ﬁ If there is trade in period k& — 1, then
1
a’?‘l =

(N =1)%(1—e "+ e Thak)
And, there will then be trade in & — 2 since

ak_l — 1 > 1 > <]_ — &)
’ (N=12(1—e+ehak) = (N—-1)2(1—e"h+erhty) eTh(N —-1))"

where the last inequality is straightforward to verify, as it is equivalent to
N —2 rh __ 1 2
(N2 =12
(N —1)erh — N +2

Hence, if there is no trade for a period and there is trade in the preceding period, there is

also trade in the preceding two periods, which, by the results in property (4), implies there

is trade in all preceding periods.

(5): Let us now show that there must be trade at period T'. First, there must be trade in

at least one period. Otherwise, a = 1— e~ 4 ¢~mha{FFImod THATY g1 411 k| which implies

ak is strictly monotonic in k, unless it always equals 1. Strict monotonicity cannot occur
since the solution must be periodic. The solution cannot always equal 1 because 1 > at, a
contradiction to the assumption of no trade.

Assume there is no trade at 7,7 — 1,...,T — £ + 1, but there is trade at period T — /.
Then, by the above arguments, there must be trade at 0,1,...,7—¢—1 as well. As a result,
ad > ab. Yet, then aZ® = (1 —e ™) +e7al > af, al ™27 = (1 —e™) +eal ™ > af,

etc., until Xt > al. But this implies there must be trade at 7', a contradiction.
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(6): Next we show ¢/ fr = —7/r. First, recall
—rh)

1-—
a’? =(1- e_rh)(l + ) — ( Pyd(l + ) fr + 26_Thai+1(1 + ) fr + e_rhalfrl(l + cr).

Plugging in the expression for f; derived above, this implies

ab = (1 —e™™)(1 + cx)? + e ™ab (1 + )2
Thus, defining ki = 2(1{} + a’?, we have kp = e "ky 1 (1 +c)? for t < T, and similarly when
t = T. Note this recursion also holds in periods in which there is no trade. This periodic

recursion has unique solution x; = 0. Then, the expression for f; implies f; = —%ck.

(7): The last property is that ay/bxy = —v. Recall the first FOC for optimal demand is

ap + CkZ CkZ . (1 — e*”h)ydckZ _y _r =
T gy I U Uiy . +e it — 20 e Z = 0,
By the third FOC above, this can be rewritten as
_ 7 Z
0—%+C—k2+ck —hr k+1+(1 e rh)( +Ck_>+ frhallf+1
bk: by, e e

Combined, these last two expressions imply

Tk k r —rh o (g T k41
S S S ( ——Z) =gk,
b= e (v (@4 = ™)

It’s straightforward to show this relation also holds when there is no trade, implying —WLZa’f +

ak = Z(v — —Z ). Plugging this back into the simplified FOC above, we arrive at ‘Z—: = —.

A.2. Corollary [I} Trade every period

Let us show (N —1)(1 — ™) > 1 is a sufficient condition for an equilibrium with trade
every period to exist. Assume we are considering whether there is trade in period k < T.
Period T is analogous. Since we must have

! -1
(N=1)(1+e (et =1))
and the solution a; of the fixed point problem is nonnegative, ¢, > —1. And, ¢, < 0 if
(N —=1)(1—e) > 1. Hence, —1 < ¢}, < 0 every period in which the market is open. Then

C —

o4



by the expressions for a, given above, the solution for a, will be negative. So, f will be
positive, and b will be negative, given by the solutions to the first-order conditions above.

Therefore, there is an equilibrium with trade every period.

Explicit Solution for (a%)!_:

In fact, in the case in which there is trade every period, we can express the solution for
(a¥)I_, in terms of the solution to a quadratic equation.
k o 1
TN =121+ emh(aE T - 1))
for k =0,...,7 — 1. Then, at time T,
T 1
a7 — .
(N = 1)?(1 + e+ (ag — 1))

Set a9 = d for some constant d which solves a quadratic equation. Write § = e~™. The

constant term in the quadratic equation is
T+1
—2 (=14 0)(V = )2 = V(N =17 (@ + (-1 + 0°(N - 1))

+2(( 14 0)(N—1)2+ /(N — 1)2(46 + (— 1+5)2(N—1)2))T+1

+ 5T+1+A

(( 1+5>5 (T+1) ( 1+5)5 T+1+A))(N_1)2

X ( ((—1 FO)N =12 — /(N — 12 (40 + (—1 + 0)2(N — 1)2)>T+1

—((—1+5 N—12++/(N—1)2(46+ (— 1+5)2(N—1)2)>T+1)
+ (07T — g THEA) /(N — 1)2 (46 + (=1 + 0)2(N — 1)2)

x ( (148 (V= 1)2 = VIN =12 (8 + (—1+ 6)2(N — 1)2)>T+1

T+1
+(( 14+ 0)(N =12+ /(N 2(40+ (— 1+5)2(N—1)2)> )]
The coeflicient on the first-order term is

ST+1+A [( —95 T 4 (1 . 5)6—(T+1) + 5—(T+1+A)(1 + 5)) (N . 1)2

X ( ((—1 +0)(N —=1)2 = /(N —1)2(46 + (=1 + 6)2(N — 1)2)>T+1

%)



( 146N =12+ /(N 12 (46 + (— 1+5)2(N—1)2)>T+1)
— (57D T+1+A>) VIN =125 + (-1 +0)2(N — 1)?)

X ( —1+9)( )2—\/(N—1)2(45+(—1+5)2(N—1)2))T+1

T+1
+(( L+ 0)(N —1)2 4+ /(N —1)2 (40 + (— 1+5)2(N—1)2)) ) ,
and the coefficient on the second-order term is

201 (N — 1)2< ((—1 +0)(N —1)? = /(N —1)2(46 + (=1 + 6)2(N — 1)2))T+1

(e -1+ VN DR (- 1+6)2(N—1)2)>T+1).

One can show that the discriminant of the quadratic equation for d is positive, implying that

one root is positive and the other is negative. The positive solution describes equilibrium.

An equilibrium with a single no-trade period:
Before proceeding to 24/7 trade, let us prove a result regarding no-trade periods of a

single period. In particular, we’ll prove the following:

LEMMA 1: Assume an equilibrium of the conjectured form, [{], with strictly downward sloping
demand schedules, by, < 0 for allk € {0,..., T}, does not exist. Then, if (N—1)(1—e=2") >
1, there is an equilibrium in which demand schedules are uniformly zero for a single period
during the trading day. This equilibrium has no trade in period T — 1 and also satisfies
properties 3 and 4 of Proposition[]] in the other periods.

It is straightforward to show via numerical examples that the condition (N — 1)(1 —

672rh)

> 1 is not meaningless, i.e., there are parameters for which 1 —e=2""* > ﬁ >1—e
and only a no-trade period for exactly one period exists.

Note since A > 1, the condition (N — 1)(1 — e™2"") > 1 alone implies there is a trade
equilibrium at 7' since the implied cr is negative. If there were also trade at T' — 1, the
oscillation properties (1) and (2) shown above would imply there is trade in all previous
periods, a contradiction. Hence, there is no trade at 17" — 1.

T-1

Now let us show that a; ~ is large enough for a trade equilibrium to occur in period

T — 2. Or equivalently, we show that the value of ¢; necessary for trade to occur is negative.
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This will imply, by property (4) above, that there is trade in all prior periods.

Since there’s no trade in period T — 1,
al ' =(1- e ™) + e_”ha? >1—e

For a trade equilibrium to exist in period T — 2, we need the necessary value of ¢r_5 to be
negative. It is sufficient that

I<(N-1)(1-e™+e™1-e) =N -1)(1—e"),
which holds.

Note there can’t be any other equilibrium which satisfies the trembling-hand refinement.
This results from our arguments above regarding uniqueness of the refined fixed point prob-
lem for a;. Intuitively, if there were a single other period without trade, it must be that
there is trade in periods T'— 1,7, and hence there would be trade in all earlier periods by

the oscillation properties.

A.3. Proposition 3: 24/7 Trade

It is straightforward to see that when A = 0, solutions to the recursions must be constant.

The recursions describing the value function reduce to

= 1 o2 o2
ag = —Z2C2 (m + e’"ha4) + GiThao + e*"ha5)\a2 + efrhaﬁ% + e*’"hag%
cle+1)Z a+cZ
a, = —
YTOB(N 1) b
CZ —rh\ . r7 —rh —rh 7
a2 =~ 1—(1—6 JeZ + e May — e MagcZ
cNZ _ . -
agzN_1+e’"ha3—e hageZ
1— —rh
ag = —%(1 + )2 4+ e May(1 4 ¢)?
.. f e S+
— (1 - rhyJ_ v rh J\- 1V *~) r
as=(l—e >2+2(N—1)+€ 2(N_1)+€ as
“E=ToN—1y ¢ a\N-1 T wN—1)te
14+¢
ar =
TTN-1
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+ e—rhag

T T oW 1)

and the equations describing the trade equilibrium reduce to.
r(N—=2—(N-1e"™(1-ay)

b=
(N — 1) (ya(e ™ = 1) 4 2re="hay)’
1
Cc = - 17
(N —=1)(14e"(a; — 1))
(e ™(ar —1))e
 qalem™ — 1) 4+ 2re—rhay’
N-2)Z —h—1)Z >
a:—%—*—b(v(e_rh—1)—6_1%&1—}—076[(6 ) +26_rhCZCZ4>.
- r

Therefore,

. (N1 —e™) + /(1 —e™2(N = 1) f-de~ |
2e~Th '

Given ¢, we can solve for a; and a4. This yields solutions for b, f,a, and the remaining

recursions.

B. Information Problem

This appendix characterizes the solution of the model when agents have heterogeneous
asset values. Recall S7 is each trader’s total signal (sum of past signals). s’ is each trader’s
modified signal. Write their expectation of the dividend as

w! + B’ + By Y (w' + ASY),
i
for some constants By, By, A. Consistency of the learning problem requires B; = A. See [Du
and Zhu| (2017b) for details. Recall the variance of private value shocks is 02, of dividend
shocks is 0%, and of signal shocks is o2. Then, Du and Zhu (2017b) Lemma 1 gives the
conditional expectation of v given w’, S7, and }_,; (w' + AS’) is
1/(4%2)
[(A%0) +1/(A%02) + (n — 1)/(A%02 + 0?)

wj—l—l ST+
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1/(A%? + 0?)

1/(A%0%) 4+ 1/(A2%02) + (n — 1)/(A%02% + 02) A ; w' ASZ)

B is defined in terms of A by the above. A solves the equation A = By, and By is then

given as a function of A.

Define
. 1 ) )
s = —(w + B157),
a
where
Aol 407

“= NA202 4+ 0%

Then, the conditional expectation of v is given by
sl 4 l-a ; Na-1, N(l—oz)g

N—1" T N-17 T TN-I

Guess that the value function is linear-quadratic:
Vi(z?, 2,8, 5) = ag + ay?’ +ays’ + afs +aj(2))* + ag(s7)” + ag (5)* + a5z’ s” + a5’ 5+ ags’s.
0% = 5 (0% +A%(0}+0?)) is variance of the shock to s/, and o}, = 23 (0?/N+A*(0},+02/N))
is the variance of the shocks to 5. The Bellman equation for every perlod, except the last, is

- |  /Na-1, NO-

Vi(27,87,5) = %%X{_D]p: +(1—e™)( + DY) ( Na— 7o J(V— f[) S)

(=M
2r

(4 + D)2 + e [ Bl gb (20 4 DY) 4 ab s 4 ks
a7 (& 4+ DI+ (1) + Ao®) + agt (5% + Ao
+ait (2 + D7)sT + aft (20 + DY)s + agt (75 + Aox)] b

and it is similar in the last period. The FOC for optimal demand in the first T periods is
then

. , . Na—1 . N(1-a«)_
0=—p; =MD’ +(1—e h)(N—18]+ N1 s)
1— —rh ) )
. ( € )'Vd(zy —i—DJ) +e—rh[ k+1 +2ak+1(zg —i—D]) k+lsg +a,§+1 ]’
r
_ Op:t
where A = opl" Assume

Di = ay, + bypr + 12 + fis’.
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The equilibrium price is

g + CkZ + f1S

Pt = b
k
The FOC implies
ap + e Z + fis 1 s o
_7 j_
- =T~ D)+ fels =)

_ Na—-1 . N(l-a)_ (1—e ™)y
1 — rh J .
+(1—e )(N_13+ N1 s)

+e " (a4 2T (14 )2 — o Z + fuls? — 5)) + ab TS+ afTs] = 0.

. (1 +cr)z? — e Z + fi(s’ —5))

Then
_ €h7" (_(18 + CL7(_2 + N) + (—]_ + ehr)(_2 + OCN)) -
(F1+ar +as + ) (~1+ N) (-1 + )y = 2a47)

ag—a7(—24+ N) — (=1 +e"m)(=2+ aN)
 ar(—=1+ N)+ (=1 +em)(—1+4aN)

fo (—as+a7(—2+ N)+ (=1 +¢e")(=2+ aN)) r
- (1 V) (7 — ¢y + 2a07)
Returning to the Bellman equation, we have

Vi = (en(9 — Z) + fuls’ — g))(% + z—’“z + ?s)
k k k
=M+ )2 —aZ + s -9 (et - H )
(1=

B T(((l + ) —aZ + fi(s) —5)))?
+e " [af™ + TN (L4 er)2? — anZ + fu(s) = 5)) + abt's? +a5t's
A+ )2 = aZ + fils’ = 5) + a1 () + A0?) + a1 (5 + Aok
+aE T (14 cp)2? — euZ + fu(s? — 3))s!
+ag ™ (1 +cn)2! — aZ + fals’ = 5))5 +ag ™ (575 + Moy

which yields recursions as before.
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Internet Appendix of: Is 24/7 Trading Better?

Appendix provides more details of the calibration and the data used. Appendix[[A.2]
studies welfare when parameters vary between night and day. Appendix quantifies
welfare relative to perfectly efficient trade. Appendix[[A.4]solves the continuous trade model,
computes the expected volume in that model, studies an exchange’s problem, and shows the
convergence of the discrete trade model to that solution. Last, Appendix provides some

simplifications of the recursions provided in the Appendix.

IA.1 Calibration Details

We calibrate our model to some large equity exchanges to study counterfactual values,
such as welfare or volume, when the length of the trading day changes. To do this, we need
estimates of a few parameters per exchange. The optimal length of a closure, A* depends
on N and Z—: Therefore, we need at least two linearly independent empirical moments from
each exchange to identify these parameters. Due to the availability of Trade and Quote
(TAQ) data, we choose to use the fraction of total daily volume in certain time intervals.
Specifically, we compute the total volume in 2023 between 9:30 a.m. and 4:00 p.m. per
exchange and the total volume in each 30-minute interval per exchange. From this, we can
compute the average fraction of daily volume from 9:30 to 12:30 and 1:00 to 4:00. We leave
out the interval 12:30 to 1:00 so that the moments are not linear combinations of each other.

We then compute the corresponding measure implied by our model. Mathematically, this is
E[Volume[%ﬁr%)} B fm 21 E [fo\il |Dtl] dt
E[Volumep-w] 25 SN, D] @t

0
where x = 0 is the start of trading, 9:30 a.m. Note that the exchanges we focus on all
trade for 6.5 hours a day, so A = %. Section details the calculation of expected
instantaneous volume. Note the above formula abuses notation, since trades at the end-
of-day session are discrete quantities, not flows. These discrete trades can be thought of
as Dirac delta functions in the integral above. Table lists the empirical moments, the
model implied moments, and the calibrated parameters per exchange, which are fit by the

method of moments. Our model fits the data well.



Table A.1
Empirical and Calibrated Moments

This table compares the fraction of daily volume per exchange from 9:30-12:30 and 1:00-4:00
to that from the calibrated model, as well as the calibrated parameters. N denotes the
estimated size of the market, and E—E is the relative instantaneous volatilities during the day
and night. We assume r = 10%, v = 0, and 2}, = 0 for all calibrations.

Current Empirical Empirical Calibrated Calibrated

Exchange Length of Volume Volume Volume Volume N gd
Night (A)  9:30-12:30 1:00-4:00 9:30-12:30 1:00-4:00 "
NYSE 72.9% 49.9% 46.0% 49.9% 44.8% 208 1.28
Nasdaq 72.9% 50.2% 45.1% 50.2% 44.5% 325 1.32
NYSE Arca 72.9% 54.5% 40.6% 54.5% 40.4% 303 1.23
CBOE EDGX 72.9% 54.8% 40.0% 54.8% 40.0% 191 0.87

IA.2 Welfare when Night Characteristics Differ From the Day

Throughout, we have assumed that marginal holding costs and the private value shock
process have been the same whether the market is open or closed. However, this is unlikely
to be true. In this Appendix, we look at the welfare gain (or loss) of a short market closure
of one hour versus 24 /7 trading when holding costs or shock magnitudes differ between night
and day. We choose to focus on the case of a one-hour closure as this is a common closure
length proposed for extending hours by the NYSE, Nasdaq, CBOE, and 24X.

Figure plots an example. The blue dotted line varies the volatility of shocks to
private values at night while holding the total volatility in a day fixed. Mathematically,

0'%—AG’%
1-A

are more shocks to private values, are not a function of the length of the closure. When

04 = . This choice ensures potential gains from trade, which are larger when there
volatility at night is less than the total volatility, there is an increase in welfare due to the
hour-long closure, and welfare decreases when the night is more volatile. The solid red line
plots the change in welfare as a function of the change in the marginal holding cost from day
to night. As it becomes cheaper to hold inventory overnight when 4 > ~,, there are large
welfare gains. When ~,; < 7,, the hour-long closure rapidly hurts welfare relative to having
the market open 24/7.

IA.3 The Cost of Imperfect Competition for Differing Closure Lengths
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Figure B.1. Welfare Change Under Heterogeneity From Day to Night
Above is the percent change between welfare under a market closure of one hour and welfare
under 24/7 trade as we vary the marginal holding cost or volatility of the shocks between
night to day. The dotted blue line plots the welfare change as a function of marginal holding
cost during the day compared to that of the night. The solid red line plots the welfare change
as a function of total volatility, 02 = (1 — A)o3 + Ac?Z, relative to volatility at night, where
o4 solves that equation. Both plots use A = 1/24, r = 10%, A = 10, N = 10, and ¢ and ~
equal 1 unless specified to be different.

Throughout, we have focused on comparing welfare under a market structure with 24/7
trade and with a daily closure, ignoring the cost of each relative to the first-best allocation.
The first-best allocation would be achieved if there were perfect competition and if the
trade occurred continuously throughout the day. In this setting, no trader ever holds any
undesired inventory. Making comparisons relative to the first-best allocation allows us to
better quantify the costs and benefits of market closure.

Figure plots the percentage of welfare loss of different market designs relative to the
first-best (efficient) allocations. Panel A is for a small market, and Panel B is for a large
market. The solid red line is the welfare loss of a market design with 24/7 trade relative to

efficient welfare. The dashed blue line is the welfare loss of a market design that is closed for
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Figure C.1. Welfare Loss Relative to Efficient Benchmark

We plot the percent welfare loss under different market designs relative to the first best
(efficient) welfare. Panel A plots this loss for a small market, and Panel B plots this loss for
a large market. The solid red line is the welfare loss of a market design that is open 24/7
relative to the efficient welfare. The dashed blue line is the welfare loss of a market design
that is closed for A periods a day relative to the efficient welfare. The dashed-and-dotted
green line is the welfare loss of a market design that is closed for 17.5 hours a day, such as
many equity exchanges, relative to efficient welfare. Both plots use r = 10%, and A = 10.

A periods a day relative to efficient welfare. The dashed-and-dotted green line is the welfare
loss of a market design that is closed for 17.5 hours a day, such as many equity exchanges,
relative to efficient welfare.

As before, the 24/7 market is better for traders than a market with a closure. However,
in Panel A, the welfare loss due to closure is very small, less than 0.40%, relative to the
overall welfare loss of imperfect competition, ~ 25%. Take, for example, when A =~ 50%.
The welfare cost is only an extra 0.30% worse than 24/7 trading, despite only allowing trade
for 50% of the day. The endogenous response by traders and coordination of liquidity at
the end of the day offset the majority of the extra costs incurred due to the inability to
trade at night. The current equity market structure, which involves trading for 6.5 hours
a day, is associated with approximately 0.33% extra loss in welfare relative to the efficient
benchmark.

In Panel B, when the market is larger, closure becomes relatively more costly. Now,



trading for 6.5 hours a day has 3.5 times the welfare loss relative to the efficient benchmark.
In this larger market, the costs relative to the efficient benchmark are significantly lower,
as the friction from imperfect competition is less important. Therefore, long closures are
fairly costly in these larger and more liquid markets, whose liquidity wouldn’t endogenously
deteriorate too much if trading hours were extended. It is worth noting that these results

assume constant volatility and holding costs across the day and night.

IA.4 Continuous Trade Model

The continuous time model assumes there is trade from time 0 to 1 — A — ¢, a no-trade
period from 1 — A — € to 1 — A, a discrete trade session at 1 — A and then an overnight
period from 1 — A to 1. If D! is the demand allocated at time ¢, we have dz' = Didt during
the continuous trade sessions. We will allow various parameters to have separate d and n
subscripts to show they can differ between [0,1 — A) and [1 — A, 1].

We begin by solving the model for continuous trading sessions between 0 and 1—A—e. We
conjecture that the other N —1 traders submit demand schedules given by Equation[d] Trade
is modeled by a uniform price double auction where the price is the solution to Equation [T}
Therefore, the equilibrium price is

. alt)+c)Z + )W,
by = — b(t) .

Note that a, b, and ¢ are functions of ¢t which are not explicitly defined between 1 — A — ¢

and 1 — A. Given the equilibrium price, the demand schedule evaluated at the equilibrium
price is
Dy = c(t) (21 = Z) + [(t)(w, = W).

Finally, conjecture that the day value function takes the following linear-quadratic form

JUt, 21w, W) = ag(t) + aq (1) 2 + an(H)w' + ag(t)W + ax(t)(2)2 4 a5 () (w')? + ag(t) (W)?
+ ar(t) 2w’ + ag(t)2'W + ag(t)w'W.

Recall that traders rationally anticipate how their demand affects their trade price. There-

fore, when trader i chooses demand d’, they face the residual demand curve that, by market

clearing, implies they face the price ®(t,d", 2*, W), defined in equation . Therefore, the

Hamilton-Jacobi-Bellman equation is



rJt = max {Jtd +rzt(v+w) — ¢, d, 2 W' — %(zi)Z + J4d'
+MB [Tt 2w+ W+ €) = St 2w W)

where &; YN (0,02%). First, we will solve for the equations that define the o functions, and
then we will add in the optimality of demand constraints. Plugging the conjectured day
value function into the HJB equation, as well as the equilibrium price and demand schedule,

we get
r(ao(t) + ap(t)2" + ao(t)w' 4+ as()W + ay(t)(2°)? + as(t) (w')?
+ ag(O)W? + ar(t)2'w' + ag(t)z'W + ag(t)w'W)
= ag(t) + @ (8)2" + ah(t)w' + a5 ()W + (1) (=) + a5 (1) (w')*
+ o (W2 + ab(t) 2w’ + ag(t) 2 W + a(t)w'W + 2'r(v + w')

=T D = 2)+ 1O = ) = B M1+ ) -+ aa(t) )
By matching coefficients, we get that
, ct)*Z? 2 & o3
Tao(t) = ao(t) — m -+ )\d(()é5(t)0'd + CYG(t)N + Oég(t)ﬁ)
rag(t) = o (t) + v+ O = 1)c(t)Z
raa(t) = 04(0) + g /(07
ras(t) = (1) = g/ (1)2
_ g c(t)?
raa(t) = ol(t) =5~ gy
/ ft)?
ras(t) = ax(t) — BN —1)
_ ft)?
rag(t) = ag(t) — W
/ 2f(t)c(t)
raqz(t) = a5 (t) +r — BN —1)
_ 2/ (t)c(t)
rag(t) = ag(t) + BN —1)



2f(t)?
b(t) (N —1)
To get the optimality of demand equations, we take the first-order condition of the right side

rag(t) = ag(t) +

of the HJB equation with respect to d’. This yields the equation
—® — dyd + JE = 0.
Plugging in the equilibrium expressions for ® and d’, we are left with the equations

a(t) +c(t)Z + fF(OHW 1
0 TN

(c(t)(=' = 2) + f(t)(w' = W))
+ ap(t) + 204(t) 2" + ar(t)w' + ag(t)W = 0.

Matching coefficients in the above equation gives us four equations that must be satisfied
for demand to be optimal:
a(t) + c(t)Z

() b(E)(N — 1>c(t)Z +ay(t) =0,
ﬁ + 204(t) = 0,

% +ar(t) =0,

?:((f; B b(t){ ]g)_ nt as(t) = 0.

From optimality of demand, ag(t) = — ((]J\\IT:QI))i((:)) = (N — 2)az(t). Summing the equations for

az(t), and ag(t) we have
1
O(7(t) = A7€rt + m
Plugging this back into the equation for a7 (1),

A
rAze’M + N_o1- rAze™ + 1+ 2cax(t),

_ —r(N—-2)
so c(t) = 2 A7 (N—D)ert11)"
Assume A4 through Ag are 0, so ay through ag are constant too. We will argue later that
this conjecture is satisfied in equilibrium. Then ¢ = —w, and ay = ﬁ The equation

for oy becomes

roy = —% —ayr(N —2),



SO (y = _r(12\7j1)' This implies
c(t) r?(N —2) r?(N —2)
b(t) 2on(N = 1) v and f(t) ar( )b(t) 0

So, b(t), c(t), and f(t) are all constant between time 0 and 1 — A —e. Solving the differential

equations for the a’s, we get

N —2)Z? b o2 o3
ao(t) = % - e”/o e " A (a5(s)0§ + ozﬁ(s)ﬁd + Oég(S)ﬁ) ds + Age”
4’}/dZ
t) = A rt _ le~=
ay(t) 1€ +U+T2(N—1)
27
t) = Age™ — ————
a2(t) 2¢ r(N —1)
27
t) = A rt o a=
as(t) ¢ r(N —1)
A VI
YT (N -1
r(N —2)
a5 = ———
27a(N — 1)
r(N —2)
g = ———
27a(N = 1)
1
ap = ——
"TTN-1
N -2
g = ——
T N-1
r(N — 2)
g = ——— =
Ya(N = 1)
Plugging in as, ag, and ag into ag and simplifying gives
_ 1N —2)Z* 2 (N —2)

== 7 rt 1 A rt.
wlt) = 5 N " Mgy (¢ 1)+ Ao

After the continuous trade sessions, there is a no-trade period of length € where no trade
occurs, and then there is a closing auction at time 1 — A. Therefore, the value function right
before the no-trade period is

Jt=1-A—¢2"w'  W)=(1-eT") (zi(v +w') — %(zif)
T
+e "FEi_a_c [Jd(t =1—-A", Zi, wLA, Wt—A)} .



Now, we move on to the discrete auction at the close, t = 1 — A. Recall that traders
rationally anticipate how their demand affects their trade price. Therefore, when trader ¢
chooses demand d’, they face the residual demand curve that, by market clearing, implies
they face the price ®(t,d’, 2*, W), defined in equation |5 Therefore, the value function at
1 — A~ satisfies
Jit=1-A" 2w W)= mdz}X{J"(t =1-A" 4+ d W', W) —®(1 - A, d, 2" W Hd'},

where J™ describes the value function overnight. We conjecture

Tt 2w, W) = Bo(t) + Bi(t)z" + Ba(t)w' + Ba ()W + Ba(t) (") + Bs(8) (w')? + Bs(t) (W)?
+ Br(t)z"w' + Bs(t)z'W + Bo(t)w' W,
To get the optimality of demand equations, we take the first-order condition of the right side
of the equation for J4(t =1 — A=, 2% w', W) with respect to d’. This yields
—® — Ppd' + Ji = 0.
Plugging in the equilibrium expressions for ® and d, we are left with

a(l=A)+c(1—=ANZ+ f1-— AW 1
b(1—A) b(1 — A)(N —1)
Bi(l = A)+284(1 — A) (2 + d') + Br(1 — A)w' + Bs(1 — A)W = 0.

d'+

First, plug in the equilibrium demand for d¢, which gives
a(l—A)+c(1-A)Z+ f(1-AW 1
b(1 —A) b(1—A)(N —-1)
+B1(1 = A) +284(1 = A) (14 (1 = A))2" — Ze(1 = A) + f(1 = A)(w' — W))
+ B7(1 — A)w' + Bs(1 — A)W = 0.

(c(1=A)(2"=Z)+f(1-A)(w'=W))

Matching coefficients in the above equation gives us four equations that must be satisfied

for demand at the closing auction to be optimal,

a(l—A)+c(1-A)Z 1 ) 7
b(1 —A) T WI—A)N = 1)0(1 “A)Z 4+ 51— A) =281 = A)e(1 — A)Z =0,
c(l1—A) B
Wiy 1) - A el —A)) =0,
f=4)

b= AN 1) T2 A=A+ (1= A) =0,



f(1—=A) f(1—A)
Wi=n) - —1 A== A+ G- 4)=0.

Now, we move on to the solution of the value function at night. The HJB equation is
r(Bo(t) + Bi(t)z" + Ba(t)w’ + Ba(t)W + Ba(t)(2)* + Bs(t) (27)?
+ Be(YW? + B7(1) 27w’ + Bs(t)2"W + Po(t)yw’ W)
= Bo(t) + B1(t)2" + By(t)w’ + B3 ()W + By(t)(=")* + B5(t) (w")?
+ B ()W + Br(t) 27w’ + By()2 W + By(t)w W

b rsi(u+ ) = P (002 + Gl + (D).
By matching coefficients, we get
0(E) = BHl0) + Ma(Balt)o? + Bolt) 2 + () 2)
rpi(t) = Bi(t) +rv
rBa(t) = By(t)
rBs(t) = B3(t)
ru(t) = Bi() — o
rBs(t) = Bs(t)
rB6(t) = B5(t)
rBr(t) = B7(t) +r
rBs(t) = By(t)
rBo(t) = By(t)
Solving the above ODEs yields the following equations
Bo(t) = — /1 t_A A" (ﬁ5<s)o—3 T 56(3)%3 " ﬁg(s)%) ds + Bye™
Bi(t) = Bie™ + v
Ba(t) = Bye™
B3(t) = Bse™
Bu(t) = —g—; + Bye"
B5(t) = Bse™

10



Bs(t) = Bge™
B7(t) =1+ Bre™
Bs(t) = Bge™
Bo(t) = Bge™

Note that [y(t) can be simplified to
folt) = (BO ~no (B P A))).

All that is left now is to solve the constants in the solutions for the a’s and ’s using

boundary value matching conditions and periodicity. The two boundary conditions are
JUt=1-A" 2w W) =J"t=1-A,2"+c(1-A) ("= 2)+ f(1 = A)(w' = W), w', W)
—d(1—A,c(1=A)2" = 2)+ f(1 — A)(w' — W), 2 W )d".

and lim J"(t, 2%, w’, W) = lim E, [J%(t = 0, 2", w’, W)].
t—1— t—1—
The first boundary condition is more involved. After the closing auction, the night value

function is actually
T = A+ e(1— A) (2 = Z) + f(1 = A)(w' — W), w', W)
= Bo(1— A) + By (1 — A) (z;‘ +e(l =AYz - Z) + fF(1— A)w' — W))+
Bo(1 = A)w' + B3(1 — A)W

+ B4(1 = A) (zl +c(1— A)(zZ — Z) +f(1—=A)(w' — W)) + Bs(1 — A)(w')? + Bs(1 — A)YIW?

+ (z§+c(1—A)(z§—Zt)+f(1—A)(wi—v‘V)> (Br(1=A)w' +Bs (1= A)W) + By (1— A)w'W.
Combining like terms gives and subtracting off the costs of the trade gives the value at
1—A":

JI=AzZ+c(1=A) = 2Z)+ f1=A)(w' = W),w' W) - 01— A, 2" W)d

a(l=A)+c(1-A)Z

= Bo(1—=A)=B1(1=A)c(1=A)Z+ (1= A)c(1-A)*Z* —c(1-A)Z

b(1—A)
+ (ml —A)(1+ (1= 1)) 28, (1= A)Z(1+ o1 — &)+ ef1— &) 2= Ab(>1+_c<Al)— A>Z)Z@-

11



n (ﬁlu AV A) + Ba(1— A) = 284(1— A)F(1 — A)e(l — A)Z — Br(1 — A)Ze(1 - A)

1—A)—|—c(1—A)Z>wi

L - ST

+ (—51(1 —A)f(1=A)+B3(1=A) + 28,1 = A) f(1 = A)e(1 = A)Z = Bs(1 = A) Ze(1 - A)

a(l—A)+c(1-A)Z f(1-A)c(l1-A):)\ .~
b(1—A) B b(1—A) Z>W

+ Ba(1 — A)(1 4 c(1 — A))?(27)?

i (m CAVF(L = AP 4 B5(1— A) 4 F(1— A)B(1 A>> (w)?

—f(1-4)

(1= 20700 - A7 = (- )7 - 8) + 1 - ) - TEEEE Y

+ (264(1 —A)1+c(1-=A))fA1—-A)+(1+c(1—A)5(1— A)) P

+ <— 2841 — A)(1+ (1= A — A) (14 (1 — AN As(1— A)+ L ;<1A)_C(i)_ A))zﬂ‘v‘v

— A)? o
(-2 1-207 (1= 27 = F1- )31 B)+1(1-8) 3 (1-8)+ (1= A =R Yoy
Finally, accounting for the no-trade period, we have
It =1—-A—¢ 2w, W) — (e — 1) (zz(v +w') — %(21)2)
r(N —2)

=J"t=1—-A2" w' W)+ e N\oie N

This equation gives the following boundary conditions at t = 1 — A:

r(N —2
eap(l1—A—¢€) — BTEAdU(%Eﬁ = 6o(1 — A)

1-A)+c(1-A)Z

} - _a(
= Bi(1 = A)e(1 = A)Z + B4(1 = A)e(1 = A)*Z7 — (1 = A)Z b(1 — A)

ea(l—A—¢)— (" = 1)v
a(l—A)+c(l1-A)Z

=Bi(1—A)1+c(1—A)=28,(1—A)Z(1+c(1 —A))+c(l—A) b(1—A)

eas(l — A —¢)
B A)F(1 = A) + Boll = A) = 28,1 — AV F(1 = A)e(l — A)Z — Br(1 — A) Ze(1 - A)

12



1—-A)+c(1-A)Z
b(1 —A) ’

+ (1 —A)“(

eaz(l — A —¢)
= (11— A)f(1 = A) + B5(1 = A) +284(1 = A) f(1 = A)e(1 = A)Z — Bs(1 = A) Ze(1 - A)

a(l—A)+c(1-A)Z  f(1-A)(1-A)
ATy T T T s 2
ean(l— A — ) + (e — 1);—;{ = Ba(1 = A)(1 + (1 — A))?,
e as(1 = A =€) = Bs(1 = A)f(1 = A)* + B5(1 = A) + f(1 = A)B:(1 = A),
as(l— A €)= ll — D)L= )~ (1= &)1 - &) + ful1 - &) — L=,

eEar(1—A—€)— (e =1)=28,(1—A)(1+c(1=A)f(1—=A)+ (1 +c(1—=A))BH(1—A),

eag(l — A —¢)

f(1=A)(1—A)
b(1—A) ’

= 26,1 = A)(1+ (1= A))J(L— &)+ (1+ (1~ A)fs(1 - &) +
e ag(l1 — A —€) = —28,(1 — A)f(1 — A)?
— FU= A1 = A) o F(1 = A)(1 — A) + Bl — &)+ T2

The boundary conditions at ¢ = 1 are simply

a;(0) = B;(1),
fori=0,1...,9.

To summarize, we have specified 20 boundary conditions at times 1 —A and 1, along with
4 demand optimality conditions at time 1 — A. There are four unknowns associated with the
a;’s, 10 unknowns associated with the 3;’s, 4 unknowns determining the demand functions
at 1 — A, and the length of the no-trade period €. Thus, these unknowns are overdetermined.
Let us specify how we solve the equations.

First, using the boundary conditions at time 1 — A, for a; for ¢ = 4,...,9, one can solve
for By,..., By in terms of €. Imposing, for instance, 54(1) = ay yields a solution for e. Then,
one can verify that 5;(1) = o; for i = 5,...,9. And, one can solve the four demand optimality
conditions for a, b, ¢, f at time 1 — A.

Now, there are 8 remaining unknowns, A;, B;, for ©+ = 0, 1, 2, 3, which determine o, 3;, for

1 =0,1,2,3. These unknowns solve four boundary conditions at 1 — A and four boundary

13



conditions at time 1. This completes the solution of the model.
We conclude by providing several expressions for some of the quantities in the model.
(N =2)(1—e2")

c(1—A)= oA (1—eAr)(N—1)

€= max{O,min{l — A,

| {(N — 1) (3 — (1 + o1 = A))?) = S (1 + (1 = A))*(3a — (N — 1>>} }}
— log .
T ’}/d(N — 2)
Assume that Z = 0 and v = 0, then A is simply
(N = 2)(e"Nao3 + " BTN o3 (er — 1) + ArA,02)
2yq4(e" — 1)N
The value function during the no-trade period itself is

JUt, 2wt W) = (1 — e m1727D) <r(v +w')z' — %(zif)
r
S N -2
+ e”"(l’A’t)J"(t =1-A" 2w W)+ e’T(lfA’t))\daﬁ(l — A — t)e”—r( )
2’7dN
The average welfare during trade is

1-A
W@piézé E [J(t,0,w’, W)]dt.

IA.4.1 Volume

Assume \g = A\gl, and 03 = 153 for some /, Ay, 54. Then, letting ¢ — oo, w? and W/
converge in law to Brownian motions during the day. We’'ll restrict attention to this limiting
case both during the day and night, as it makes the computation of expressions involving
volume much more tractable. Additionally, we’ll assume v, = 74, which is sufficient to
ensure volume reaches a steady state distribution. Denote the volatility of the Brownian
shocks during the day and night by o4, 0,,, respectively.

We will omit time subscripts when denoting demand coefficients in the portion of the day
preceding the no-trade period, since those coefficients are constant, and denote coefficients

at the closing session by a 1 — A subscript. Then, during the trading day,

t
m_DwMJ@/éWWW}wm)
0

14



In addition, under the assumption that 74 = ~,, we have fi_A/c;_a = f/c. Using this, one

can show
. Ci_ . N -1
1-a = ICA 1—a—e + fi-aveoy w02
for some N(0,1) variable do. Moreover,
; ; N -1 N -1
Dy = (1+c-a)Di o + (chioa + f)Veou\| =02 + [V Aon | ——0s,

for an independent N (0, 1) shock d3. Combining these expressions,

e2c(l-A—e) _ 1

, . N-—-1
DI = (1 D! c(1-A—¢) 1 B \/ \/
1 ( + A) o€ + ( + 1 A)fO'd N ¢

+ (cfi-a +f)\/20d\/ N]\_f 152+f\/z<7n N]\; 1537

for a third independent N (0, 1) shock ;.
Therefore, (D!)%°, is an AR(1) process with normally distributed shocks. Moreover,

01

values of D! throughout the day have an unconditional normal distribution with mean 0 and

variance
2c(l-A—e€) _q

cht((l +ea)? fPog "4 (cfiea + [)Pe0] + [PA02) A5 N —1e2 1

2 2
1— (14 ¢ _p)2e2(-2=q) L N 2¢

Thus, since volume at any point of the day is simply Y, |Dj|, its expectation is the mean of

(the sum of) a folded normal distribution.

IA.4.2 The Exchange’s Problem

In this subsection, we formally model an approximation of an exchange’s problem. As-
sume that an exchange’s goal is to maximize the expected volume. They do this by choosing
the length of closure, A. We abuse notation below, but note that D! = 0 during any period

of no trade or during the closure. The exchange’s problem is

o N
/ e Y (Z ‘DZ!) ds
t i=1

The inner internal is the realized volume over the life of the asset. The outer integral

. 1 1-A
A” € argmax E dt. (18)
A Jo

A€[0,1) 1—

averages over the start time in the first day, as time is a state variable. Note the integral
above abuses notation, since trades at the end-of-day session are discrete quantities, not

flows. These discrete trades can be thought of as Dirac delta functions in the integral above.

15



We can rewrite the problem as

1-A
AEEargmaX A/ / —rls=t) (ZE|D1)ds dt.
A€[0,1) -

As traders are ex-ante identical, E [|D?|] is unconditionally symmetric across traders. Also,
from , we know that D! is unconditionally normal with mean 0 and a time-dependent
variance, denoted 2. Therefore, | D! is a folded normal distribution with mean \/gat. The
problem reduces to

1-A
AP ¢ argmax N 1A / / g ds dt.

Ag[o,1)

Finally, let’s take care of the discrete trades at the close of each day. Breaking the inner

integral into pieces, it becomes

o0

1-A
/ e " Vo ds + e "2 g A+ Z
¢ k=1
where for k > 0 and for t € [k,k +1— A —¢|, oy is

k+1—-A—e
[/ e—r(s—t)o_sds + e_r(k+1_A)0-k+1—A
k

N —1 eZc(t—k) _

1

+ f20?

\/626(tk) (1 + Cl—A)2f203626(1_2Ac_6)71 + (cfi_a + f)2€<72 + fZAafL)%
N 2c

1—(1+01,A>2€2C(17A76)
forte(k+1—-A—ek+1—A),0y=0,andfort =k+1—A, 0, is

c1-A\ 2 le—AE(N_ 1)
V() oty 0

Note that ~ just scales volume and only the ratio of volatility between day and night matters,

not the levels. Therefore, the optimal length of closure from an exchange’s perspective, AE,
is only a function of N, r, and Z¢

This extension allows us to compare trader-optimal, A*, and exchange-optimal, A%,
closures numerically. Figure plots these two quantities as a function of the number of
traders on the exchange, N. In general, there does not seem to be an interior optimum
for an exchange. When the market is small, they maximize volume by having one discrete
trading session at the start of the day. When the market is sufficiently large, volume is then
maximized by having trade 24/7. In practice, most exchanges require some downtime for
basic daily maintenance, which they prefer not to have during trading in case of technical

issuesE In general, the decision of the optimal length of closure is positively related between

For example, the CME Globex Trading System closes from 5:00 to 6:00 p.m. EST for daily maintenance.
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Figure D.1. Optimal Length of Closure
We plot the ex-ante welfare maximizing length of closure, A*, that maximizes Equation
and the optimal length of closure, A¥, is that which maximizes expected volume defined by
Equation [I8] We assume that o and v are constant across day and night and use r = 10%.

traders and an exchange.

Finally, we use the calibrated quantities from Table [[| to see what the exchanges would
prefer to do within the confines of our model. The results are in Table [D.1] Given that all
four exchanges are calibrated to be large, it is not surprising that all four calibrations imply
that 24/7 trading is optimal from an exchange’s perspective. In fact, the implied increase
in volume from extending trading hours to 23/7 or 24/7 is very large, ranging from 74.9%
up to 90.5%. It is, therefore, not surprising that three of these four exchanges already have
plans to extend their trading hours. However, a naive estimate for the increase in volume
from extending hours would be on the order of 254% as that is the increase in the amount
of trading hours a day from 6.5 to 23. We only calibrate a third of that effect due to the
endogeneity in the trading strategies. As hours are extended, per-period liquidity drops,

especially at the close, making instantaneous volume much smaller.

IA.4.3 Convergence

In this section, we show numerically that the discrete trade model converges to the

17



Table D.1
Calibration: Exchange’s Perspective

This table compares the volume of the current market closure to that of 23/7 trading, or the
optimal length of closure from an exchange s perspective by using the calibrated volatility and
number of traders per exchange. N denotes the estimated size of the market, and ”d is the
relative instantaneous volatilities during the day and night. We assume that total volatlhty
is constant across closure lengths so that o4 solves 62 = (1—A)o2+Ac?2. The optlmal length
of closure, A¥| is that which maximizes expected volume defined by Equation [18| given the
calibrated parameters and subject to the total volatility constraint. We assume r = 10%,
v =0, and z; = 0 for all calibrations.

Current e - Optimal % Volume % Volume
Exchange Length of N Zd Length of Change from Change from
Night (A) " Night (AF) A to 23/7 A to AF
NYSE 72.9% 208 1.28 0.0% 74.9% 75.5%
Nasdaq 72.9% 325 1.32 0.0% 89.1% 90.1%
Arca 72.9% 303 1.23 0.0% 89.6% 90.5%
CBOE EDGX 72.9% 191 0.87 0.0% 83.6% 84.1%

continuous trade model. In particular, for a given set of parameter values, Figure
plots the maximum difference between the discrete and continuous trade welfares, end-of-
day aggressiveness captured by ¢ in the final session, and no-trade period lengths. This
maximum is over A € {0,1,..., K — 1}, where for the continuous trade model, A is replaced
by A/K. As we see, the errors follow roughly a linear path in the log-log plots, suggesting

convergence is algebraic.

TA.4.4 Proof of Proposition 4: Existence of Non-Zero Optimum

In this section, we prove Proposition [3| Specifically, we show that a very short closure
always increases welfare relative to 24/7 trading, and therefore, the optimal length of closure
is never zero. First, we take the derivative of welfare, Equation [16] with respect to the
closure length,

aaAW(A) _ % {ﬁ /01_A Nay(t) + o? (N%(t) + ae(t) + a9(t))dt]7

where the o’s are defined in Appendix [[A.4 For algebraic simplicity, we won’t write out
€(A), but note that (A = 0) = 0. We will also be focusing on cases with very small A, and
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This figure plots maximum absolute errors in various characteristics of the discrete and
continuous trade models as a function of the number of trading periods in a day. The
maximum is over the length of the trading day, and errors are given as a function of K, the
number of periods in the trading day. K is set to 4%, for i = 1,...,6. We set r = 10%, \ =
l,o=1,v=1,

so € will always be less than 1 — A. After some simplifications, the derivative of welfare can

be written as

I p(a) =

T T
102 103
Number of Periods

T T T
10! 102 103
Number of Periods

T
10t

T T
10? 103
Number of Periods

Figure D.2. Convergence of Discrete Trade Solution

N = 100.

e_rA(N — 2)o?

0A

2(1 —

A)Z(er _

(er(1+A+e(A))(>\ + T) . 67”+Ar(2)\ + 7”)

— "B\ 1) 4 e CATRDN(L 47 — Ar) + A" (A 47— Ar)

+eEANA+Ar(1—(1—A)r)) +er

(1—A)(e" —1)(e™® —1)(A+71)€(A)

+€(A) (r —er+A(l—¢+ ereB) perAHeA) (] 4 (—1 4 A)r))

(=14 A)em B (—1 4 A\ e'(A)>

First, note that

)

0

ZW(A)

0A
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Then, taking another derivative to get the second-order condition and evaluating at A = 0,

we get that

0? (N —2)r?o?
—W(A) =—>0.
0A? Ao 27
Therefore, welfare is strictly convex at A = 0. So, W(A') > W(0) for some A’ sufficiently

small, and, therefore, the optimal length of closure is non-zero.

TA.5 Simplifications of Discrete Trade Solutions

TA.5.1 Simplifications of Model without Information:

Let’s simplify some of the recursions describing the value function by using the FOCs:

_ Z 1—e " _ _
ab = ch( _ s (1—e v — wckZ — e hak 4 e_rhaff“lckZ)

bk 2r
Coh L L —rh kbl 2 —rh 410 b k10
+e Tay T +e ag 0" +e Tag N—l—e agy N
— _Z2C2 1 + e—rhak-‘rl I e_rhat-i-l + 6—rhak+1a2 + e—rhak+1a_2 + e—rhak-HU_Q
k bk(N . 1) 4 0 5 6 N 9 N
and
cway + 27
a¥ = kkb—k + (1 —e ™1+ )
k
1— —rh _ _
+ (67“—)%(1 +en)enZ + e+ cp)ab Tt — 267 (1 + ) e Zah T
cxl ., (1 — e ™MygenZ ., ., _
= ¢ (m —(1—e™p— . — e haktt 2Tk e, 7

1—e - >
+ (1 =™+ v+ %(1 +en)enZ + €M1+ ep)aTt — 267 (1 + ) e Zak T
2Z 1— —rh _ B
= ﬁ + (1 — e ™)y + wckZ + e hah T — 2e7 ey, Zak T

. Ck(Ck + 1)2 _ ap + CkZ
T (N —1) by

and

_ _ 1— —rh B
ay = % + %Z +(1—e ™) (frv — cxZ) + d = )Wdckka +e ™M fraktt 4 et
k k r
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. frh2ak+1ckka _ efrhal;JrlckZ

1— —rh _ _
. f (Z: + ka+ (1 —rh)v+ ( er >7deZ+€_rha’1€+l . €_Th2a§+1CkZ)

—(1—e ™ Z + ekt — e el e Z

e (e e e e 7
ak = —fZ—Zk - QfZ—:k 7 —(1—e ™ frv— A=) e—Th)fydeka —e " fra ™ + e ag ™!
b et e foZ — e Ml e Z
= —fr (Z—: + % + (1 —e ™o+ A= er’“h)y cnZ 4 ekt — emhgk e Z)
- fZ—ka + _Thalgﬂ - e_rhalgﬂckz
Ckka fk Ck

Z + efrhak+1 e rha§+lckZ

(N =1) by
and adding these last two, and using the solution to f/b by adding the last two optimality

frh< k+1+ak+1)

of demand, a§ +af = ¢ which implies ay = —as.

1—¢e 7
&g — (1 . efrh)fk . ( ;T >7df]3 + efrha§+1f]? " ei?‘h k+1 + efrhal;+1fk
_ fk fk —rh _k fk —_
—(1— rhyJk T +1JK rh k+1
(I1—e )2 —Zbk(N—1)+e a5 tea
2 1— efrh YVa . . .
alg:_i_( ~ ) FRoehalt 2y emrhahtl _ prhghtl g
fl?N —rh k-l—lfk —rh k+1
25 (N — 1) sy e
These two imply af — af = f’“ + e M (al T — gk th.
1—e™
=(1—e™1+c) - H—m(l +cp) fr + 27TV 1 4 ) fro F e AT (1 + )
Ji
=——(1
v =1y L)
and



Adding the equations for a7, ag,

ak + af = —5 = (1—e™™) +e (k™ + afth).
k
This implies a7 + ag = 1. Last,
2 1—e "
&lg _ b_k: _ (1 _efrh)fk_{_ ( er )’Ydf zefrh +1f]? _efrhal;Jrlfk+efrha18€+1fk+efrhalgc+1
k
fk: f2 —rh k+1 —rh k+1
+—F —te frte
b be(N—1) %
27 (1—e)vaf} .y _
_ bk(Nk_l) _ - E 4 9e haiﬂfg_i_e rhalg-i-l
_ fR 2+ ) L erhgktL
br(1 4 c)(N — 1) 9
Therefore, we have
7 1 - —-r —-r 2 - 02
GSZ_Z%z(bk(N_l) e h k+1) Te ha6+1_|_ h k+1 o2 4 erh k:+1N Te halg-i—lﬁ
o — cx(en +1)Z _apt cxl
LOb(N = 1) by
Z _ _
a]2€ fk (Ck 1) (1 . e—rh)ckZ + e—Tha]2€+l . e—rha§+lckZ
CkkaZ _r _r
ak = TV 1) +e ekt — ekt e 7
1 — —rh
ak = (=) ;T )%l(l +cp)? +e a1+ ep)?
iy Tk fi . R
ag — (1 —e h)? . Zbk(]\?_ 1) +e hal;+1? +e ha15€+1
2
kE_ ka __ _—rh k-l—lﬁ —rh k+1
%= Top (N - 1) s g te
K Tk
=1
= v o)
ko Cefe fe(N —2)
= — 1
&= ot
2
2
ok — fi (24 ) bkt

b1+ ) (N —1)
for t < T. There is an analogous recursion at time 7.
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IA.5.2 Simplifications of Model with Information:

The recursions corresponding to the Bellman equation are given by

_ chak + CkZ (1—e ™)y 27
bk 2r

+ efrha6+l . efrhalchrlckZ +e Thai+l 2z2 +e —rh kJrl)\O, +e rhakJrl)\O,]QV + efrhalg+1)\o_]2v

crap +caZ (1 —e ™)y

o

af = 5 + . (1+cr)enZ +e ™1+ cp)al™ — 27 (1 + ¢ )er Zah™
k
- Na—1 1—e
ang _ Jrak I M .yl —efrh)ckZ o 4 ( € )Vdckf Z4e ™, ak+1 +€7rhal2q+1
by by, N -1
e_rh2ak+lckfk2 — e_rha’7“+lc 7
Jra Jrcr . Nl—a) (1—e)y, s
ab = — b —2?2 (1—e™cpZ N1 . crnfuZ — e frak
+e —rh k-i-l +e rh2ak+lckfk2 _ 6—rha§+1ck2
1 — —rh
ai = __( ;7. )de(l ‘|‘Ck)2 —|—6_Thali+1(1 +Ck)2
Na-—1 1—e"h
alg =(1- e—rh)fk _ ( )%lf;? + e—rhai—&-lf]? —rhalg—',-l + e—rhal;-&-lfk
N -1 2r
f2 —r N(]' B Oé) (1 — e_rh)fyd —r —r -7
a’g:—i—(l—e ™) fi N1 5 fE4e a4 e ekt — e hak L f
. Na -1 1—e -
a; = (1—e™)(1+cp) N1 ( ; m(l + ) fr + 2N+ ) f

+ e_rha;f“(l + cx)

K Crlk o N1-a) (I=e™)y
= 1-— 1 1
9= +( )(1+ ) N_1 © . (1 + cx) fi
— 2~ rhali-i-l(l + Ck’)fk + e—rhalg-i—l(l _'_Ck)
2 Na—-1 Nl-—a) (1—e™)v
k —rh —rh 2 —rh k+1
— Lk _ (1 1— _
a4y =7 A=V T A= iy F " i I

—rh k+1 7rh +1 —rh k+1
— e Qar fk +e f +e .

Let’s again simplify some of these recursions by using the FOCs:

_ VA 1—eTh _
agchk(—ak—ch ( ;T )VdckZ rhgktl | o rhak+lckZ)
k
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_'_efrh t+1 tLe rh k+1 2+€ rh k+1 2 _i_efrh k+1o,]2v

- 1
— _ZZCZ _i_efrh k+1 —|—6*Th t+1 _i_efrh k+1 2+€7rh k+1 2 _i_efTh k+10_2
g (bk(N —1) N
and
L Crap + Az
S
k

1— —rh _ _
+ w(l +ep)enZ + e+ cp)af Tt = 2e7 (1 + ) ep Zalh T
oA (1 —e™MvacZ —r ~
(bk(N =) — " — e hah T 2 e, 7
1— —rh _ _
+ (er—m(l +en)enZ + e M1+ cp)ab Tt — 267 (1 + ) e Zah T
CQZ (1 _ e_rh>7d ~ —r -
— bk(Nk— 0 + cnZ + e a T — 2e7 e, Zak
ala+1)Z Cap+ el
(N —1) by
and
k Jrak | fkCk 5 ok Na —1
— RO KGR 5 7
Qs by + by — ( e ")k N —1
(1—e™)v > —rhp k+1 | _—rh k+1 _ _—rho k+1 5 —rh k1 7
+ ————cpfrZ +e " fraiT + e as e ""2ay " e fxd —e ar T e Z

_ 1—e " _ _
— fk (% b_Z + (er—mckz + e—rhallc-i-l o 6—7’h2a§+lck2)
k k
Na —1 _
—(1—e™eZ Na_ - 4 ethgktl _ ooty 7

cx’ Na -1 -
(]\l; ) —(1—e™eZ N1 T e ekt — eThgb e, Z

= Jr

N (=M ZN(l —a) (-

— _glkTk
3 by by N_1

. e—rhf ak+1 + e—rhalg—l-l + e—rhzai—l—lcksz o €_rha’§+1ck2

Z 1— —rh _ -
S (% I (1—e )’chkZ +emhaht e‘thafj“ckZ)
r

Ckka

b, by
_ _1 - _
— _fkckZ —(1—e™eZ S e habtt — el e, 7
by N -1
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frZ JrCr N(1—a)

_bk(N — 1) _ bk Z _ (1 o efrh)ckzﬁ + efrhalg%l . efrhangrlckZ
Then,
Na—1 (1—e _
ak = (1—e ™) (14cp) N1 ! " )vd(1+ck)fk+26_7"haﬁf+1(1+ck)fk+e ThaE T (1)
Ji
=———(1
v =1y L)
and
K Crfr Tk f
= —=)(1
% T (bk(N—l) b)( +en)
Adding the equations for a7, as,
bt = 5 (e e o)
Then,
2 Na—1 N(1—-a) (1—eT)y,
k k —rh —rh 2
=2 —(1- 1—
= (1—e )ka_1+( e ") fx N_1 T . i
_Zefrhalz+1f’?_e +1f 4o rh k+1f 4 rh k+1
2 2
k i ) —rh,, +1 —rh k+1
bk+bk(N—1)+( e ") fx N1 te fr+e
(1—e™afi 217 —rh_k+1 2 h k+1
= — 2 T -r
" +bk(N—1)+ e ay T fi + ag
b(N — 1) bp(1+cp)(N — 1) ?
_ (2+ c) f7 + e TRkt
be(1+ cp) (N —1)
Therefore, we have
1
722 (bk<N )—I—e rhai—l—l) 4eThattl 4 e rhahtlg? | omrhgkil2 | oorhokl 2
o cx(er +1)Z _apt YA
Lob(V—1) by
Z ~-Na—1 _
— £ (Ck 5 —(1—e™)eZ Na_ : 4 e thaktl _ omrhahktle, 7
fiNZ _r N(l—a) . _
a§ = —m — (1 — € h)CkZﬁ +e h ]§+1 (& ha§+ICkZ
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(1—e ")

(1 +Ck)2 +€—rhai+1(1 +Ck)2

2 —rh k+1 £2 —rh k+1 —rh k+1

or o
(1= ey, ija_—ll (- ; )Yd
_ _g_f . erh)ka](vl_—fé) (- Z:h)w
= —ﬁ(l + cx)
St i (R0
)
- bku(itk;?xk_ e

2 —rh k+1 £2 —rh k+1 —rh k+1
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