
An Economic Model of a Decentralized Exchange with

Concentrated Liquidity∗

Joel Hasbrouck† Thomas J. Rivera‡ Fahad Saleh§

Abstract

We develop a model of a decentralized exchange that allows investors to concentrate
liquidity within pre-specified price intervals (e.g., Uniswap V3). Providing liquidity for
a risky/risk-free asset pair within any interval is analogous to investing in a dynamic
portfolio of those assets, subject to an arbitrage cost, where the risky asset weight
declines as its price increases. We derive equilibrium liquidity provision for each price
interval and provide a simple approximation that can be useful for empirical work. We
also show that liquidity provision generates an ex-fee return approximately equivalent
to the return from a covered call trading strategy.

Keywords: Decentralized Exchange, DEX, Automated Market Makers, AMM, Concen-
trated Liquidity, Uniswap V3

∗We thank Agostino Capponi, Campbell Harvey, Ruizhe Jia, Ciamac Moallemi, Christine Parlour, Adri-
ano Rampini, Tim Roughgarden, Vish Viswanathan, Anthony Zhang and seminar participants at Duke
University for valuable comments.

†New York University Stern School of Business. Email: jh4@stern.nyu.edu
‡McGill University. Email: thomas.rivera@mcgill.ca
§Wake Forest University. Email: salehf@wfu.edu



A decentralized exchange (DEX) is an innovation that allows investors to exchange digital

assets through the use of smart contracts deployed on a blockchain. The first successful design

of a DEX (e.g., Uniswap V1/V2) allows investors to passively provide liquidity uniformly

across all price levels. While innovative, this design suffers from inefficiencies because uniform

liquidity provision results in a substantial amount of liquidity being provided at price levels

that are unlikely to be reached. To overcome these inefficiencies, a new design for liquidity

provision, concentrated liquidity provision, has been developed with this new design being

characterized by allowing investors to provide liquidity for only trades with trade prices

within particular price intervals explicitly specified by the liquidity provider. The aim of

this paper is to shed light on the referenced innovation by studying the equilibrium liquidity

provision for a DEX with concentrated liquidity.

Formally, our paper puts forth an economic model of a DEX with concentrated liquidity

provision (e.g., Uniswap V3). In providing such a model, we characterize the investment

return profile for concentrated liquidity providers, and also provide a useful expression for

equilibrium liquidity provision distribution across all price levels. Our analysis of the invest-

ment return to liquidity providers offers worthwhile context for investors deciding whether

to provide liquidity to a DEX such as Uniswap V3. Moreover, our characterization of equi-

librium liquidity provision provides an empirically useful framework that can be utilized to

study DEX liquidity provision in practice.

To provide more detail, we examine a continuous time model with a single DEX that

facilitates trading of a risky asset, hereafter ETH, against a risk-free asset, hereafter USDC.1

Our model consists of investors with identical investment horizons and traders with exoge-

nous trading demand. All investors have access to the risk-free asset, USDC, and can lend

and borrow that asset at an exogenous risk-free rate. At the beginning of the investment

horizon, investors optimally allocate capital across DEX liquidity provision and a portfolio of

1ETH represents ether, the native cryptoasset of the Ethereum blockchain (a risky crypto-asset) while
USDC represents USD coin, a stable coin pegged to the US dollar. ETH-USDC is typically the most actively
traded token pair at decentralized exchanges such as Uniswap.
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risky assets. Thereafter, traders arrive sequentially and trade at the DEX. Each trader pays

a proportional fee on her trading volume. These fees are distributed pro-rata to the investors

who provided liquidity to the price interval that contains the trades. At the conclusion of the

investment horizon, all investors liquidate their investments and realize their pay-offs. We

assume that, over the investment horizon, ETH-USDC prices at non-DEX venues (e.g., at

centralized exchanges) follow an exogenous generalized diffusion process which reflects inno-

vations in public information. In contrast, ETH-USDC prices at the DEX follow a mechanical

pricing function known as a Constant Product Automated Market Maker (CPAMM) func-

tion (see John et al. 2023 for details). We assume that arbitrage traders immediately exploit

any price dislocations between the DEX and non-DEX trading venues, thereby maintaining

alignment between ETH-USDC prices at the DEX and the ETH-USDC price at non-DEX

venues in equilibrium.

Crucially, our model departs from prior literature by allowing for concentrated liquidity

provision at the DEX. More explicitly, as per Uniswap V3, we assume that the DEX parti-

tions the range of ETH-USDC prices into intervals and that investors may select any subset

of price intervals to which they can provide liquidity. Our model contrasts with prior work

that assumes that any DEX liquidity provision must necessarily apply uniformly across all

price levels. Note that early DEX deployments (e.g., Uniswap V1/V2) impose this latter

condition but recent DEX deployments (e.g., Uniswap V3) allow for concentrated liquidity

provision as per our model.

Our paper consists of three sets of results. First, we provide results that characterize the

investment return profile for providing liquidity to an arbitrary price interval. In particular,

we demonstrate that ex-fee returns from liquidity provision are equivalent to the returns

from investing in a dynamic ETH-USDC portfolio minus the loss-versus-rebalancing effect

first highlighted by Milionis et al. (2022). Notably, we explicitly derive the dynamic portfolio

weighting and demonstrate that the ETH portfolio weight is decreasing in the ETH-USDC

price (Proposition 4.2). After characterizing the returns from liquidity provision for any
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given interval, our second set of results compares those returns across arbitrary intervals.

Our key insight here is that the ex-fee return from providing liquidity to a price interval

lying above the current ETH-USDC price increases as we consider intervals further above

the ETH-USDC price. Further, we show that ex-fee returns from liquidity provision to all

such intervals lying above the current ETH-USDC price are always dominated by the return

from investing only in ETH (Propositions 4.3 and 4.4). Similarly, the ex-fee return from

providing liquidity to a price interval lying below the current ETH-USDC price increases

as we consider intervals further below the ETH-USDC price and ex-fee returns for all such

intervals are always dominated by the return from holding USDC (Propositions 4.3 and

4.5). This second set of results implicitly highlights that equilibrium fee returns must be

sufficiently large to offset the opportunity cost of not investing directly in ETH or USDC.

Relatedly, our third set of results, which constitute our primary contribution, provides a

closed-form expression for the equilibrium liquidity provision distribution across price levels.

In more detail, after characterizing the equilibrium liquidity provision for any arbitrary width

of the price interval, we then study a limiting case whereby the price intervals collapse to

zero width, which allows us to derive closed-form expressions for both equilibrium liquidity

provision (Proposition 4.7) and equilibrium liquidity provision returns (Proposition 4.8).

Notably, our equilibrium liquidity provision expression is easy to compute, and we show how

it can be used to approximate liquidity provision in practice. Our results can thus be applied

to empirically test the distribution of liquidity provision at DEXs that support concentrated

liquidity. Importantly, we also demonstrate that our derived equilibrium liquidity provision

return is similar to the return on an ETH-USDC covered call trading strategy, clarifying that

concentrated liquidity provision differs from investing directly in ETH mainly by foregoing

ETH price appreciation beyond a certain point.

In order to explain our findings, we emphasize that providing DEX liquidity to a given

price interval comes with the restriction that the liquidity can be utilized to facilitate trades

only within that interval. Importantly, in exchange for providing such inventory, each in-
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vestor receives 1.) a pro-rata share of any trading fees earned from trades executed within

that interval and 2.) a pro-rata share of the total inventory associated with the selected

price interval. We show that the return from the pro-rata share of inventory is equivalent to

the return on the portfolio of ETH-USDC inventory for the interval minus the loss-versus-

rebalancing cost of Milionis et al. (2022). We characterize this aforementioned ETH-USDC

inventory portfolio for each interval (Proposition 4.1), hereafter referred to as the liquidity

portfolio for the given price interval, noting that this characterization is a specialization of

a known result that applies to a more general class of AMMs (see Milionis et al. 2022).

Importantly, we demonstrate that the liquidity portfolio possesses dynamic portfolio weights

which vary with the ETH-USDC price (Proposition 4.2). In particular, we show that the

ETH portfolio weight is unity when the ETH-USDC price is below the price interval, zero

when the ETH-USDC price is above the price interval, and continuously decreasing from

unity to zero as the ETH-USDC price increases through the price interval. It is important

to note that Proposition 4.2 would not arise under uniform liquidity provision. More ex-

plicitly, a DEX with a CPAMM function and uniform liquidity provision (e.g., Uniswap V1

and V2) generates a 50-50 portfolio for the two assets being traded against each other (see

Angeris et al. 2021). Crucially, the referenced 50-50 portfolio weighting for uniform liquidity

provision is static and invariant to market prices; this static nature of the liquidity portfolio

under uniform liquidity provision contrasts with the dynamic nature of the liquidity portfolio

under concentrated liquidity provision.

In order to understand the dynamic nature of the liquidity portfolio (i.e., Proposition

4.2), it is necessary to recognize that the mechanical nature of DEX pricing implies that

the ETH-USDC price at the DEX does not directly respond to public information. Rather,

when public information induces an increase in the exogenous ETH-USDC price at non-DEX

venues (e.g., at centralized exchanges), this generates profitable trading opportunities at the

DEX whereby arbitrage traders buy ETH at a stale price from the DEX and sell ETH at the

new higher price at a non-DEX venue (see Capponi and Jia 2021). The referenced arbitrage
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trading ensures that the DEX price is always aligned with the ETH-USDC price at non-

DEX venues. Thus, as the ETH-USDC price increases through a particular price interval,

arbitrage activities lead to net buying of ETH at the DEX; in turn, since an ETH buy at

a DEX is implemented as a swap of ETH for USDC, such net buying decreases the ETH

portfolio weight of the liquidity portfolio for that price interval.

Our second set of results provides comparative insights for the investment returns from

liquidity provision at a DEX. Most notably, Proposition 4.3 establishes that the ex-fee real-

ized return for providing liquidity at a DEX to any price interval is always dominated by the

return from investing in either ETH or USDC directly. More precisely, the ex-fee realized re-

turn from providing liquidity to an interval above the initial ETH-USDC price is dominated

by investing directly in ETH, whereas the ex-fee realized return from providing liquidity to

an interval below the initial ETH-USDC price is dominated by directly holding USDC. Of

note, Proposition 4.3 can be understood as a formal demonstration of the loss-versus-holding

(a.k.a. impermanent loss) concept to a CPAMM DEX with concentrated liquidity.

Importantly, Proposition 4.3 helps us frame the trade-off that liquidity providers inter-

nalize when providing liquidity to a given price interval. More explicitly, since the return on

a liquidity portfolio is always dominated by the return from holding ETH (USDC) directly,

it follows that an investor will provide liquidity to the DEX within a given price interval

only if the expected return from trading fees is high enough to off-set the opportunity cost

of accepting a lower return from the liquidity portfolio. Crucially, the fact that investors

earn their pro-rata share of fee revenues from trading that occurs within their price interval

implies that the liquidity provision to a given interval will adjust in equilibrium to guarantee

that the return from fees exactly offsets the opportunity cost of liquidity provision.

Given all the aforementioned context, we turn to our main result which is to provide the

equilibrium liquidity provision for each price interval. We specifically provide that result in

two ways. First, when deriving our equilibrium model solution (Proposition 3.1), we provide

a general expression for equilibrium liquidity provision for each price interval. Subsequently,
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in Proposition 4.7, we derive equilibrium liquidity provision in a limiting case of our model

whereby the width of the price interval goes to zero and apply that limit to construct a simple

approximation of equilibrium liquidity provision for each price interval. We offer both the

general expression and an approximate expression because the general result of Proposition

3.1 is somewhat opaque, whereas the limiting result of Proposition 4.7 has an intuitive

form. More precisely, the limiting equilibrium liquidity provision for each price interval has

quotient form with the numerator representing the expected fee revenue and the denominator

representing the extent to which ex-fee expected returns fall short of risk-adjusted returns

from investing directly in ETH. This limiting expression thus transparently highlights the

manner in which equilibrium liquidity provision increases with fees but decreases with the

opportunity cost of investment. Notably, we demonstrate that our limiting distribution of

liquidity provision can be utilized to form a simple approximation of equilibrium liquidity

provision that is easy to compute across all price intervals and commensurately easy to apply

for future empirical work and comparative statics.

We conclude our analysis by offering an intuitive characterization of the returns to liq-

uidity provision at a DEX with concentrated liquidity. More explicitly, we conclude with

Proposition 4.8, a result which reveals that providing liquidity to a particular price inter-

val at a DEX with concentrated liquidity is approximately equivalent to holding ETH and

shorting a particular ETH-USDC call against that ETH position (i.e., a covered call). The

aforementioned call option is characterized by a strike price which is within the price inter-

val to which liquidity is being provided and a maturity equal to the end of the investor’s

investment horizon. To understand this result, recall from Proposition 4.2 that the liquidity

portfolio for a given price interval consists of only ETH when the ETH-USDC price is below

the price interval and the liquidity portfolio consists of only USDC when the ETH-USDC

price is above the interval. In turn, as a consequence, providing liquidity to a price interval

over a fixed investment horizon corresponds to receiving the ETH pay-off if the ETH-USDC

price ends below the price interval but otherwise corresponds to the pay-off from having sold
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the ETH inventory for USDC if the ETH-USDC price ends above the price interval. Impor-

tantly, as per Proposition 4.8, this pay-off profile can be approximated by the aforementioned

covered call strategy. In particular, under the aforementioned covered call strategy, if the

terminal ETH-USDC price ends below the interval, then the call option expires worthless

and the investor holds only ETH, just as if the investor had provided liquidity to the DEX. In

contrast, when the terminal ETH-USDC price ends above the interval, then the call option

is optimally exercised and therefore the investor sells her ETH in return for USDC which

also generates the same pay-off in this case from providing liquidity to the DEX.

In broad terms, our paper relates to the literature examining the economics of blockchain.

Makarov and Schoar (2022), John et al. (2022), and John et al. (2023) provide surveys of

that literature. That literature includes many strands of work including blockchain eco-

nomic security (e.g., Biais et al. 2019, Saleh 2021 and Chiu and Koeppl 2022), blockchain

microstructure elements (e.g., Easley et al. 2019, Huberman et al. 2021 and Lehar and Par-

lour 2020), smart contracts (e.g., Cong and He 2019) and tokenomics (e.g., Cong et al. 2021

and Mayer 2022). More recently, a literature examining Decentralized Finance (DeFi) ap-

plications on blockchain has emerged, and our work contributes especially to that strand of

work. In more detail, the DeFi literature particularly examines lending platforms (see, e.g.,

Chiu et al. 2022, Lehar and Parlour 2022, Chaudhary et al. 2023, Rivera et al. 2023) and

DEXs, whereby our contribution is to the latter.

The literature on DEXs is young but quickly growing. The early literature on decen-

tralized exchanges includes Aoyagi (2020), Aoyagi and Ito (2021), Capponi and Jia (2021),

Lehar and Parlour (2021), Park (2021), Hasbrouck et al. (2022) and Milionis et al. (2022).

Apart from Milionis et al. (2022), all the aforementioned papers focus on settings with uni-

form liquidity provision as per the practice of many DEX deployments (e.g., Uniswap V1

and V2). Thus, our contribution relative to those works is that we study a new type of

DEX, namely a DEX with concentrated liquidity provision. It is noteworthy that Milionis

et al. (2022) study a more general setting but focus on establishing a generic cost of DEX
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investing known as Loss-Versus-Rebalancing (LVR) rather than examining specific features

of any particular type of DEX. Importantly, the main insight of Milionis et al. (2022) holds

even out-of-equilibrium and thus Milionis et al. (2022) study a model with an exogenous

level of liquidity provision. In contrast, we determine liquidity provision endogenously and a

primary contribution of our work is to provide a simple expression for equilibrium liquidity

provision across all price intervals.

While we are the first to study an equilibrium model of a DEX with concentrated liquid-

ity provision, there exist other papers that either examine this specific setting empirically or

out-of-equilibrium (i.e., with exogenous liquidity provision). With regard to empirical work,

complementary to our work is the work of Barbon and Ranaldo (2022), Lehar et al. (2022)

and Caparros et al. (2023), both of which conduct empirical analysis on Uniswap V3 (a

DEX that allows for concentrated liquidity provision). Of note, Lehar et al. (2022) also pro-

vide theoretical analysis but focus on competition across markets, abstracting from liquidity

provision across multiple intervals, rather than examining the implications of concentrated

liquidity provision within a single market. With regard to works also studying a DEX with

concentrated liquidity provision in a theoretical context, Neuder et al. 2021 and Heimbach

et al. 2022 theoretically examine the return profile for a single investor. Our work differs from

those works in that we provide an equilibrium analysis with endogenously derived liquidity

provision whereas the referenced papers abstract from equilibrium asset pricing conditions

and also take DEX liquidity provision as exogenous.

1 Institutional Detail Regarding Uniswap V3

Before stating our formal economic model, we first clarify the mechanics of a DEX with

concentrated liquidity. More explicitly, within this section, we explain the mechanics of the

most prominent DEX that offers concentrated liquidity provision, Uniswap V3. As an aside,

our model exposition in Section 2 is largely self-contained so that a reader may skip this
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section with minimal loss in clarity with regard to our formal analysis.

The Uniswap V3 specification governs exchanges between two cryptoassets. For exposi-

tional simplicity, we assume the two cryptoassets are ETH (a risky cryptoasset) and USDC

(a USD stablecoin), with prices stated in terms of USDC per ETH token. The price space

is partitioned into a set of intervals. Each price interval corresponds to the range defined by

adjacent values on a price grid which is given as follows:

Ψk “ p1 ` ∆q
k (1)

for all k P Z and with ∆ ą 0 determining the geometric width of each price interval (i.e.,

Ψk`1

Ψk
“ 1 ` ∆ for all i).

Associated with each interval is a portfolio of ETH and USDC contributed by liquidity

suppliers. The ETH and USDC in this portfolio are available for exchange in that ETH

buyers provide USDC as payment in return for ETH, whereas ETH sellers provide ETH in

return for USDC as payment. To provide more detail regarding the mechanics of trades,

Uniswap V3 determines pricing by requiring the following invariant hold at all times:

´

ETHi,t `
Li

?
Ψi`1

¯´

USDCi,t ` Li
a

Ψi

¯

“ L2
i (2)

where ETHi,t denotes the ETH inventory in price interval i at time t, USDCi,t denotes the

USDC inventory in price interval i at time t and Li ě 0 denotes an endogenous market-

determined quantity, generally termed “liquidity” by practitioners.

To see how Equation (2) determines pricing, note that trading δETH ETH alters the

ETH inventory from ETHi,t to ETHi,t ´ δETH where we use the convention that δETH ą 0

corresponds to an ETH buy while δETH ă 0 corresponds to an ETH sell. Importantly, by

altering the ETH inventory level, trading ETH alters the first term on the left hand side of

Equation (2) and thus requires an offsetting adjustment to the second term on the left hand

side of Equation (2) (i.e., to USDC inventory) so as to maintain Equation (2) after the trade.
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In more detail, an ETH buy (i.e., δETH ą 0) reduces ETH inventory and thereby requires an

off-setting increase in USDC inventory of δUSDC ą 0, whereas an ETH sale (i.e., δETH ă 0)

reduces ETH inventory and thereby requires an off-setting decrease of USDC inventory by

δUSDC ă 0. More formally, an ETH trade not only alters ETH inventory to ETHi,t ´ δETH

but, to maintain Equation (2), it must be accompanied by an alteration in USDC inventory

to USDCi,t ` δUSDC where δUSDC can be derived by imposing the invariant in Equation (2)

with ETH and USDC inventory levels updated to those after the trade:

´

ETHi,t ´ δETH `
Li

?
Ψi`1

¯´

USDCi,t ` δUSDC ` Li
a

Ψi

¯

“ L2
i (3)

When δETH ą 0, the additional USDC inventory of δUSDC ą 0 is deemed as the payment

for the ETH buy. Similarly, when δETH ă 0, the reduction in USDC inventory is deemed as

the proceeds from the ETH sale. In turn, given that interpretation, it is easy to compute

the (average) price of an ETH trade of δETH by solving for δUSDC and then taking the price

as the amount of USDC per unit ETH (i.e., δUSDC

δETH
). More explicitly, Equation (2) and (3)

collectively imply the following average price, PDEX
t pδETHq, for trading δETH ETH:2

PDEX
t pδETHq “

USDCi,t ` Li
?
Ψi

ETHi,t `
Li?
Ψi`1

´ δETH
, δETH P rδ´

i,t, δ
`
i,ts (4)

where δETH is restricted to the domain rδ´
i,t, δ

`
i,ts with δ

´
i,t ă 0 representing the largest ETH

sale feasible at time t within price interval i and δ`
i,t ą 0 representing the largest ETH buy

feasible at time t within price interval i. To provide further context, the largest feasible ETH

buy is the ETH quantity that would fully deplete the ETH inventory within the price interval

(i.e., δ`
i,t “ ETHi,t), whereas the largest feasible ETH sale is the ETH sale that would fully

deplete the USDC inventory within the interval (i.e., |δ´
i,t ˆ PDEX

t pδ´
i,tq| ď USDCi,t). If a

2Note that Equation (4) is identical to the pricing for uniform liquidity provision derived in John et al.
(2023) except that the true inventory levels, ETHi,t and USDCi,t, are inflated by additive factors. More
explicitly, ETHi,t is replaced by ETH 1

i,t “ ETHi,t ` Li?
Ψi`1

whereas USDCi,t is replaced by USDC 1
i,t “

USDCi,t ` Li

?
Ψi. In practice, ETH 1

i,t and USDC 1
i,t are generally referred to as “virtual” inventory.
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trader wishes to place an order larger than δETH P rδ´
i,t, δ

`
i,ts, then the maximum feasible

trade is executed within the price interval i, and the remainder of the trading volume is

executed within other price intervals. More explicitly, if the trader wishes to trade δ ą δ`
i,t,

then a trade size of δ`
i,t is executed within price interval i and the remainder of the trade is

executed within price intervals above price interval i; similarly, if the trader wishes to trade

δ ă δ´
i,t, then a trade size of δ´

i,t is executed within price interval i and the remainder of the

trade is executed within price intervals below price interval i.

Crucially, note that, as per Equation (4), trading alters the ETH-USDC price in the

direction of the trade with an ETH buy increasing the ETH-USDC price and an ETH sell

decreasing the ETH-USDC price (i.e., dP
dδ

ą 0 in Equation 4). Uniswap V3 is particularly

specified such that the ETH-USDC price moves continuously upwards through a price interval

due to ETH buying; the buying depletes the ETH inventory, and the ETH-USDC price enters

the adjacent upper interval exactly when the initial interval possesses zero ETH inventory.

Similarly, the ETH-USDC price moves continuously downward through a price interval due

to ETH selling; the selling depletes the USDC inventory, and the ETH-USDC price enters

the adjacent lower interval exactly when the initial interval possesses zero USDC inventory.

Given Li, Uniswap V3 is simply a mechanical rule. There is no presumption that the

rule represents an optimal market structure. Nonetheless, Li is not an exogenous parameter;

rather, it is an endogenous economic quantity determined by the level of investment from

liquidity providers. An important contribution of our work is that we depart from prior

literature by deriving Li as an equilibrium object rather than taking it as exogenous.

2 A Model of Concentrated Liquidity Provision

We model a single investment horizon from time t “ 0 to t “ T . At t “ 0, investors arrive

and allocate their capital across all available investment opportunities. At t “ T , investors

liquidate their investments and realize their pay-offs. We assume that investors select their
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portfolios at t “ 0 to maximize their expected utility.

2.1 Assets

There exist two assets: a risk-free asset (USDC) and a risky asset (ETH). USDC is the

numeraire and may be borrowed or lent at the exogenous risk-free rate r ą 0. In contrast,

ETH is a risky asset with ETH-USDC prices tPtu
T
t“0 evolving according to an exogenous

continuous time diffusion process given by:

dPt
Pt

“ r dt ` σt dB
Q
t (5)

where tBQ
t uTt“0 denotes a Brownian motion under the risk-neutral measure Q while tσtu

T
t“0

denotes a non-negative process for instantaneous ETH return volatility. We require that

tσtu
T
t“0 is such that tPtu

T
t“0 is non-negative, fully supported on R` and further that there

exists a continuous function fpp, tq which gives the density of pt :“ logpPtq at value p; we also

require Ere
1
2

T
ş

0

σ2
t dt

s ă 8. Note that all these regularity conditions are satisfied by geometric

Brownian motion (i.e., σt “ σ ą 0), the most common special case of Equation (5).

2.2 Decentralized Exchange (DEX)

We model a single Decentralized Exchange (DEX) which allows for the trading of ETH

against USDC and operates as described in Section 1. Investors may invest in the DEX

by providing liquidity to the DEX which facilitates the DEX’s trading activity. In more

detail, an investor providing liquidity to the DEX means that the investor provides the DEX

with ETH and USDC inventory which is then used by the DEX to meet demand for traders

buying or selling ETH against USDC.

The DEX partitions the feasible range of ETH-USDC prices into exogenous intervals

and each investor may concentrate her liquidity provision on any subset of those intervals.

Providing liquidity to a particular price interval implies that the investor’s inventory can be
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used for trading at the DEX only if that trading occurs at ETH-USDC prices within that

specific price interval. In turn, an investor providing liquidity to a particular price interval

does not improve liquidity for traders when ETH-USDC prices are outside that price interval.

We let price interval i P Z correspond to interval rΨi,Ψi`1s where, as in practice, each

interval endpoint is given explicitly by Ψk “ p1`∆qk with ∆ ą 0 determining the geometric

width of each price interval (i.e., Ψk`1

Ψk
“ 1 ` ∆ for all k). Then, the gross return from

providing liquidity to interval i, RDEX,i, is given as follows:

RDEX,i “ Ri
P&L ` ϕi (6)

where Ri
P&L denotes the ex-fee gross return on the liquidity providers inventory for price

interval i and ϕi denotes the fees accrued by liquidity providers within price interval i for

providing a unit of inventory capital to price interval i. We subsequently clarify how Ri
P&L

and ϕi are each determined.

2.2.1 Ex-Fee Return to Liquidity Providers, Ri
P&L

As noted earlier, the liquidity provided to the DEX for any particular price interval is

provided as inventory in the form of ETH and USDC and thus the liquidity provided for

any particular price interval constitutes a portfolio of ETH and USDC. Notably, when an

investor provides liquidity at a particular price interval, she becomes a pro-rata owner of

the portfolio associated with that price interval, which we refer to as the liquidity portfolio

for that price interval. In turn, the ex-fee gross return to an investor for providing liquidity

to price interval i, Ri
P&L, is the gross liquidity portfolio return, which is given explicitly as

follows:

Ri
P&L “

Πi,T

Πi,0

(7)

with Πi,t denoting the liquidity portfolio value of inventory associated with price interval i.

Since the liquidity portfolio consists of only ETH and USDC, Πi,t is the sum of the market
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value of ETH and USDC in the portfolio, which is given explicitly as follows:

Πi,t “ USDCi,t ` ETHi,t ˆ Pt (8)

where USDCi,t denotes the inventory of USDC within price interval i at time t, and ETHi,t

denotes the inventory of ETH within price interval i at time t.

The value of inventory, Πi,t, fluctuates not only due to fluctuations of ETH-USDC prices

(i.e., changes in Pt) but also due to changes in the quantity of ETH and USDC associated

with the price interval (i.e., changes in ETHi,t and USDCi,t). In particular, trading at the

DEX, when prices are within price interval i, leads to changes in the quantity of ETH and

USDC associated with price interval i. For example, buying ETH against USDC at a DEX

entails removing ETH inventory from the DEX in exchange for depositing USDC inventory

to the DEX, with the quantity of USDC deposited corresponding to the dollar price paid

for the ETH removed. As per Uniswap V3, we assume that the DEX employs a a Constant

Product Automated Market Maker (CPAMM) for pricing (see Section 1). We also assume

that the ETH-USDC prices at the DEX remain aligned with the true value of ETH-USDC

prices due to arbitrage trading and we follow Milionis et al. (2022) by abstracting from

arbitrageurs trading fees. In that case, the quantity of USDC, USDCi,t, and the quantity of

ETH, ETHi,t, in price interval i at time t are given explicitly as follows:3

USDCi,t “

´

b

P̃i,t ´
a

Ψi

¯

ˆ Li, ETHi,t “

´ 1
b

P̃i,t

´
1

?
Ψi`1

¯

ˆ Li (9)

where Li is an endogenous quantity that practitioners refer to as the “liquidity” for price

interval i that is proportional to the dollar value of the liquidity provided to interval i, while

P̃i,t denotes the projection of the ETH-USDC price onto interval i given by:

3Formally, Equation (9) follows directly from the equations that define the Uniswap V3 protocol, Equa-
tions (2) and (4), when imposing the additional requirement that the marginal ETH-USDC DEX price aligns
with the price at other trading venues (i.e., lim

δÑ0`
PDEX
t pδq “ Pt for all t where P

DEX
t pδq is defined explicitly

in Equation 4).
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P̃i,t “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Ψi`1 if Pt ą Ψi`1

Pt if Pt P rΨi,Ψi`1s

Ψi if Pt ă Ψi

(10)

Equations (7) - (10) then imply that Ri
P&L is given explicitly as follows:

Ri
P&L “

´

b

P̃i,T ´
?
Ψi

¯

`

´

1?
P̃i,T

´ 1?
Ψi`1

¯

ˆ PT
´

b

P̃i,0 ´
?
Ψi

¯

`

´

1?
P̃i,0

´ 1?
Ψi`1

¯

ˆ P0

(11)

2.2.2 Fees Accrued to Liquidity Providers, ϕi

Turning to fees accrued by liquidity providers, the DEX charges a proportional fee, ϕ ě 0,

on all trading volume. All fees generated from trading within price interval i are paid pro-

rata to the investors who provide liquidity for that interval. More formally, letting V ą 0

denote the trading volume per unit time and letting Ip¨q denote an indicator variable, the

cumulative fees accrued for price interval i, Φi, from time 0 to time T is given as follows:4

Φi “

T
ż

0

ϕ ˆ V ˆ IpPt P rΨi,Ψi`1sq dt (12)

Furthermore, those total fees, Φi, are distributed pro-rata among the liquidity providers

for the price interval i. Since the total investment by liquidity providers is given by the

portfolio value of assets associated with the price interval at t “ 0, the fees accrued for a

unit of investment capital to price interval i, ϕi, is therefore given explicitly as follows:

ϕi “
Φi

Πi,0

(13)

4Note that we can easily incorporate the fact that higher inventory in any given interval leads to lower
price impacts (see e.g., Hasbrouck et al. 2022) by assuming that trading volume, Vi, to interval i takes the
functional form Vi “ A ¨ pΠi,0qα for some constants A ě 0 and α P p0, 1q. Using this functional form will
only slightly modify our expression for equilibrium liquidity provision.
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Note that we assume that all non-arbitrage trading corresponds to noise trading activity

that nets out in terms of the price impact at the DEX. Therefore, changes in the DEX price

only occur when innovations in public information (i.e., the price at the non-DEX venue)

creates incentives for arbitrageurs to arbitrage the stale prices at the DEX.

3 Model Solution

Under the risk-neutral measure Q, all assets must generate the same pay-off as a risk-free

investment. Explicitly, letting R‹
DEX,i denote the equilibrium rate of return from investing

in price interval i at the DEX, the following equation must hold for all i:

EQ
rR‹

DEX,is “ erT (14)

Then, applying Equations (6) and (13) to Equation (14) yields:

EQ
rRi

P&Ls `
EQrΦis

Π‹
i,0

“ erT (15)

where Π‹
i,0 refers to the dollar value of equilibrium investment to price interval i. Note that

both the expected ex-fee return from investing in price interval i, Ri
P&L, and the expected

total fees accrued in price interval i, Φi, are exogenous (see Equations 11 and 12). In turn,

the endogenous equilibrium investment, Π‹
i,0, can be derived directly from Equation (15).

Furthermore, all other endogenous quantities can be determined from Π‹
i,0. More formally,

the following result provides an explicit solution for all endogenous quantities.

Proposition 3.1. Equilibrium Model Solution

The equilibrium investment, Π‹
i,0, for each interval i P Z is given explicitly as follows:

Π‹
i,0 “

EQrΦis

erT ´ EQrRi
P&Ls

(16)

where the Q-measure total expected fee revenue for interval i, EQrΦis, is given explicitly as
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follows:

EQ
rΦis “ ϕ ˆ V ˆ

T
ż

0

QpPt P rΨi,Ψi`1sq dt (17)

In turn, the equilibrium liquidity, L‹
i , for each interval i is given explicitly as follows:

L‹
i “

Π‹
i,0

γi
(18)

with γi is defined as follows:

γi “

´

b

P̃i,0 ´
a

Ψi

¯

`

´ 1
b

P̃i,0

´
1

?
Ψi`1

¯

ˆ P0 (19)

Finally, the equilibrium quantities of USDC, USDC‹
i,t, and ETH, ETH‹

i,t, in price inter-

val i at time t are given as follows:

USDC‹
i,t “

´

b

P̃i,t ´
a

Ψi

¯

ˆ L‹
i , ETH‹

i,t “

´ 1
b

P̃i,t

´
1

?
Ψi`1

¯

ˆ L‹
i (20)

4 Equilibrium Results

We begin in Section 4.1 by clarifying the characteristics of the ex-fee return to liquidity

providers, Ri
P&L, for any given price interval i. In doing so, we demonstrate that providing

liquidity to any price interval is equivalent to investing in a dynamic ETH-USDC portfolio

with an ETH weight that declines in the ETH-USDC price. Subsequently, in Section 4.2, we

compare ex-fee realized returns from providing liquidity at the DEX with those from direct

investment in ETH or USDC. An important insight therein is that, in the absence of fees,

providing liquidity to any price interval above the initial ETH-USDC price is dominated

by holding ETH directly, whereas providing liquidity to any price interval below the initial
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ETH-USDC price is dominated by holding USDC directly. These findings implicitly establish

that, in equilibrium, the return from fees earned by providing liquidity to an interval must

offset the opportunity cost of not investing directly in ETH or USDC instead. Finally, in

Section 4.3, we provide our main results. More explicitly, we provide an approximate closed-

form expression for equilibrium liquidity provision to any price interval. Moreover, we also

demonstrate that the ex-fee return to liquidity provision is approximately equivalent to the

return from a covered call trading strategy.

4.1 Ex-Fee Return to Liquidity Providers, Ri
P&L

In the absence of trading fees, providing liquidity for ETH-USDC in price interval i is equiv-

alent to investing in a portfolio of ETH and USDC except that the investor also faces a

loss-versus-rebalancing (LVR) cost. A generalized version of this insight has been demon-

strated previously for arbitrary AMMs (see Milionis et al. 2022); nonetheless, for complete-

ness, we begin by re-establishing the result in our specific context of a CPAMM DEX with

concentrated liquidity provision:

Proposition 4.1. Liquidity Provision Is Investing in ETH-USDC Portfolio

The instantaneous ex-fee return from providing liquidity to price interval i is given as follows:

dΠ‹
i,t

Π‹
i,t

“ ω‹
i,t

dPt
Pt

´
li,t
Π‹
i,t

dt (21)

where ω‹
i,t denotes the equilibrium proportion of the inventory invested in ETH:

ω‹
i,t “

ETH‹
i,t ˆ Pt

Π‹
i,t

“
ETH‹

i,t ˆ Pt

USDC‹
i,t ` ETH‹

i,t ˆ Pt
(22)

and li,t denotes the instantaneous loss-versus-rebalancing pLVRq, given explicitly as follows:

li,t “

$

’

’

&

’

’

%

L‹
i σ

2
t

?
Pt

4
if Pt P rΨi,Ψi`1s

0 otherwise

(23)
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Explicitly, Equation (21) states that the instantaneous ex-fee liquidity provision return,

dΠ‹
i,t

Π‹
i,t
, evolves akin to an ETH-USDC portfolio with an ETH portfolio weight that equals

exactly the DEX inventory value of ETH as a proportion of the total DEX inventory value

(i.e., ω‹
i,t “

ETH‹
i,tˆPt

Π‹
i,t

). There is also a loss beyond the ETH-USDC portfolio instantaneous

return,
li,t
Π‹

i,t
, and this loss corresponds to the loss-versus-rebalancing (LVR) of Milionis et al.

(2022); the LVR loss occurs because arbitrage trades occur at the DEX at stale prices and

therefore impose losses on the liquidity providers.

To understand Proposition 4.1, it is important to recognize that liquidity providers for

price interval i are pro-rata owners of the inventory associated with that price interval. Thus,

the ex-fee return for providing liquidity for a price interval of ETH-USDC corresponds to

the return from an ETH-USDC portfolio because the inventory for that price interval is a

combination of ETH and USDC. In particular, as per Equation (21), an investor providing

liquidity for price interval i experiences an instantaneous return,
dΠ‹

i,t

Π‹
i,t
, proportional to instan-

taneous ETH returns, dPt

Pt
, exactly to the extent that ETH is weighted within the inventory

for price interval i, ω‹
i,t.

Having shown that liquidity provision returns are akin to investment in an ETH-USDC

portfolio, we next turn to clarifying the nature of that ETH-USDC portfolio in the context

of a DEX with concentrated liquidity provision. To that end, we find that the ETH portfolio

weighting, ω‹
i,t, is dynamic and more specifically that it depends negatively on the ETH-

USDC price, Pt. More explicitly, we establish the following result:

Proposition 4.2. ETH Portfolio Weight Declines Monotonically From Unity to Zero

When the ETH-USDC price level is below the price interval pi.e., Pt ă Ψiq, then the liquidity

portfolio is equivalent to holding ETH directly:

Pt ă Ψi ùñ ω‹
i,t “ 1 (24)
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When the ETH-USDC price level is within the price interval pi.e., Pt P rΨi,Ψi`1sq, then

the liquidity portfolio is equivalent to holding an ETH-USDC portfolio with dynamic weight-

ing:

Pt P rΨi,Ψi`1s ùñ ω‹
i,t “ ω‹

i pPtq (25)

where ω‹
i : rΨi,Ψi`1s ÞÑ r0, 1s is a continuous and monotonically decreasing function that

satisfies ω‹
i pΨiq “ 1 and ω‹

i pΨi`1q “ 0.

When the ETH-USDC price level is above the price interval pi.e., Pt ą Ψi`1q, then the

liquidity portfolio is equivalent to holding USDC directly:

Pt ą Ψi`1 ùñ ω‹
i,t “ 0 (26)

Proposition 4.2 establishes not only that the ETH portfolio weight, ω‹
i,t, is dynamic but

also that the ETH portfolio weight specifically evolves as a decreasing function of the ETH-

USDC price, Pt. In more detail, the ETH portfolio weight is unity when the ETH-USDC

price is fully below the interval but then declines continuously to zero as the ETH-USDC

price moves through the interval and finally remains zero thereafter when the ETH-USDC

price is fully above the interval. It is noteworthy that this result would not hold if we were

to assume uniform liquidity provision; more explicitly, under uniform liquidity provision and

a CPAMM (e.g., Uniswap V1 and V2), ω‹
i,t is constant and does not depend on Pt (see, e.g.,

Angeris et al. 2021).5

To understand Proposition 4.2, it is important to recognize that increases in the ETH-

USDC price lead to net buying of ETH at the DEX and that net buying of ETH at the

DEX reduces the proportion of ETH inventory held by the DEX. To provide more context,

5To provide additional context, a CPAMM is a special case within a broader class of AMMs known as
Geometric Mean Market Makers (G3Ms). Notably, under uniform liquidity provision, all G3Ms possess
static portfolio weights (see, e.g., Angeris and Chitra 2020 and Evans 2021). Proposition 4.2 demonstrates
that this static portfolio weights result does not hold under concentrated liquidity thereby highlighting an
important difference between uniform liquidity and concentrated liquidity.
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recall that the DEX employs a mechanical pricing function (i.e., CPAMM) and that this

mechanical pricing function does not directly incorporate innovations in public information.

Thus, when a positive innovation generates an increase in the ETH-USDC price away from

the DEX, an arbitrage opportunity arises whereby traders can momentarily buy at stale

ETH-USDC prices from the DEX and sell at the new higher ETH-USDC prices away from

the DEX.6 In turn, this arbitrage trading represents net ETH buying at the DEX which

reduces the ETH weight in the liquidity portfolio. More concretely, the reduction in the

ETH portfolio weight arises from the ETH buy trade because a trade that buys ETH at the

DEX is implemented as an ETH-USDC swap where the trader receives ETH inventory from

the DEX in return for providing payment as USDC inventory to the DEX, thereby lowering

the liquidity portfolio ETH weight.

4.2 Comparative Insights Regarding LP Returns

We next turn to examining how providing liquidity at a DEX with concentrated liquidity

provision compares to investing directly in ETH or USDC. Our first result in that regard,

Proposition 4.3, highlights that, in the absence of fees, providing liquidity at a DEX with

concentrated liquidity provision is always dominated either by investing directly in ETH or

by investing directly in USDC:

Proposition 4.3. Ex-Fee LP Return Is Dominated by ETH or USDC

For any price interval i that is above the initial price level pi.e., Ψi ě P0q, the ex-fee realized

return is lower than then realized return from investing in ETH directly:

Ri
P&L ď

PT
P0

“: RETH (27)

Moreover, for any price interval i that is below the initial price level pi.e., Ψi`1 ď P0q,

the ex-fee realized return is lower than the realized return from investing in USDC directly:

6This stale price arbitrage trading was first studied by Capponi and Jia (2021).
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Ri
P&L ď 1 “: RUSDC (28)

Moreover, ErRi
P&Ls ă ErRETHs for any price interval i.

To provide more detail, Proposition 4.3 establishes that the realized return from investing

in ETH always exceeds the ex-fee realized return from liquidity provision to any price interval

above the initial ETH-USDC price (Equation 27), and the realized return from holding USDC

always exceeds the ex-fee realized return from liquidity provision to any price interval below

the initial ETH-USDC price (Equation 28). In order to explain these results, we first show

(via Propositions 4.4 and 4.5) that the returns on the liquidity portfolio for a given price

interval are higher for price intervals further away from the initial ETH-USDC price. Then,

Proposition 4.3 is derived from the fact that investing in a price interval infinitely far above

the current ETH-USDC price is equivalent to investing directly in ETH while investing in

a price interval infinitely far below the current ETH-USDC price is equivalent to holding

USDC.

Proposition 4.4. Ex-Fee LP Return Increases Above The Money, Converges to ETH Return

For any two price intervals i ą j such that the smaller price interval is above the initial price

level pi.e., Ψj ě P0q, then the ex-fee realized return of the higher price interval exceeds that

of the lower price interval:

Ri
P&L ě Rj

P&L (29)

Moreover, the ex-fee realized return for providing liquidity to a price interval i converges

to the return from investing directly in ETH as the interval becomes arbitrarily far above the

initial price level pi.e., i Ñ 8q:

lim
iÑ8

Ri
P&L “

PT
P0

“ RETH (30)

22



Proposition 4.4 finds that, when comparing two price intervals i ą j above the initial

ETH-USDC price (i.e., Ψj ě P0), then the realized ex-fee return for providing liquidity to

the higher interval always exceeds that for providing liquidity to the lower interval (i.e.,

Ri
P&L ě Rj

P&L). Proposition 4.4 also finds that the ex-fee realized return for providing

liquidity to price intervals above the initial ETH-USDC price converges to the ETH return

as the interval being examined becomes infinitely far above the initial ETH-USDC price (i.e.,

lim
iÑ8

Ri
P&L “ RETH).

The first part of Proposition 4.4 arises because the ETH portfolio weights for any pair

of price intervals above the initial ETH-USDC price can differ only when the ETH-USDC

price is above its initial level. Moreover, a higher price interval possesses a higher ETH

portfolio weight in general and thus generates a higher realized return because it incurs

a larger gain whenever the ETH price increases. To provide more depth, Proposition 4.2

establishes that both price intervals possess ETH portfolio weights of unity when the ETH-

USDC price is below the intervals and ETH portfolio weights of zero when the ETH-USDC

price is above the intervals. In turn, the ETH portfolio weights for the pair of price intervals

differ only when the ETH-USDC price is above the lower bound of the smaller interval but

below the upper bound of the larger interval. Since Proposition 4.4 examines only price

intervals above the initial ETH-USDC price, the ETH portfolio weights for such intervals

differ only in cases that the ETH-USDC price increases due to the fact that entering either

price interval requires an ETH-USDC price increase. Then, because the higher price interval

possesses a higher ETH portfolio weight always, the higher price interval therefore always

realizes a higher return. Intuitively, the higher price interval is more exposed to ETH when

ETH-USDC prices increase and thus it incurs larger gains and realizes a higher return.

The second part of Proposition 4.4 arises because the ETH portfolio weight is unity

when the ETH-USDC price is below the price interval. Thus, an ETH-USDC portfolio with

a weight of unity on ETH is a portfolio of only ETH and therefore equivalent to holding ETH

directly. Then, since the ETH-USDC price never reaches a price interval infinitely far above
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the current price level, that limiting price interval possesses an ETH portfolio weight of unity

with probability one and consequently providing liquidity to that interval is equivalent to

holding ETH directly.

Proposition 4.5. Ex-Fee LP Return Decreases Below The Money, Converges to USDC Return

For any two price intervals i ą j such that the larger price interval is fully below the initial

price level pi.e., Ψi`1 ď P0q, then the ex-fee realized return of the lower price interval exceeds

that of the higher price interval:

Rj
P&L ě Ri

P&L (31)

Moreover, the ex-fee realized return for providing liquidity to a price interval i converges

to the return from holding USDC directly as the interval becomes arbitrarily far below the

initial price level pi.e., i Ñ ´8q:

lim
iÑ´8

Ri
P&L “ 1 “ RUSDC (32)

As a consequence, ErRi
P&Ls ă ErRUSDCs for any price interval i.

Proposition 4.5 finds that, when comparing two price intervals i ą j below the initial

ETH-USDC price (i.e., Ψi`1 ď P0), then the realized ex-fee return for providing liquidity

to the lower interval always exceeds that for providing liquidity to the higher interval (i.e.,

Rj
P&L ě Ri

P&L). Proposition 4.5 also finds that the ex-fee realized return for providing

liquidity to price intervals below the initial ETH-USDC price converges to the USDC return

as the interval being examined becomes infinitely far below the initial ETH-USDC price (i.e.,

lim
iÑ´8

Ri
P&L “ RUSDC).

Similar to the intuition for Proposition 4.4, the first part of Proposition 4.5 arises because

the ETH portfolio weights for any pair of price intervals below the initial ETH-USDC price

differ only when the ETH-USDC price is below its initial level; additionally, the lower price

interval possesses a lower ETH portfolio weight and thus the lower price interval incurs a
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higher realized return because it incurs a smaller loss from an ETH price decrease. To provide

more depth, Proposition 4.2 establishes that both price intervals possess ETH portfolio

weights of unity when the ETH-USDC price is below the intervals and ETH portfolio weights

of zero when the ETH-USDC price is above the intervals. As a consequence, the ETH

portfolio weights for the pair of price intervals differ only when the ETH-USDC price is below

the upper bound of the higher interval but above the lower bound of the lower interval. Since

Proposition 4.5 examines only price intervals below the initial ETH-USDC price, the ETH

portfolio weights for such intervals differ only in cases that the ETH-USDC price decreases

due to the fact that entering either price interval requires an ETH-USDC price decrease.

Then, because the lower price interval possesses a lower ETH portfolio weight always (see

Proposition 4.2), the lower price interval therefore always realizes a higher return. Intuitively,

the lower price interval is less exposed to ETH when ETH-USDC prices decline and thus it

faces smaller losses and realizes a higher return.

The second part of Proposition 4.5 arises because the ETH portfolio weight is zero when

the ETH-USDC price is above the price interval (see Proposition 4.2) and also because

the ETH-USDC price at liquidation is above the price interval infinitely far below with

probability one. Notably, an ETH-USDC portfolio with a weight of zero on ETH is a

portfolio of only USDC and thus equivalent to holding USDC directly. In turn, since the

ETH-USDC price never reaches a price interval that is infinitely far below the initial ETH-

USDC price, then the price interval infinitely far below possesses an ETH portfolio weight

of zero with probability one, implying that providing liquidity to that interval is equivalent

to holding USDC directly.

4.3 Equilibrium Liquidity Provision, Π‹
i,0

Our final set of results concerns equilibrium liquidity provision, Π‹
i,0. We begin by highlight-

ing that, in the absence of fees (i.e., ϕ “ 0), the equilibrium liquidity provision is zero for all

price intervals:
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Corollary 4.6. The Need For Fees at a DEX

If trading fees are zero pe.g., ϕ “ 0q, then liquidity provision is also zero:

ϕ “ 0 ùñ Π‹
i,0 “ 0 for all i (33)

Corollary 4.6 arises due to Proposition 4.3. In particular, since ex-fee realized returns from

liquidity provision are below realized returns for at least one other investment opportunity

(i.e., direct holding of ETH or USDC), DEX liquidity provision is therefore a dominated

strategy in the absence of fees. In turn, in the absence of fees, no investor would provide

liquidity to the DEX in equilibrium and there is a need for fees just as in the case of a DEX

with uniform liquidity provision (see, e.g., Hasbrouck et al. 2022).

Nonetheless, fees are non-zero in practice and Equation (16) characterizes equilibrium

liquidity provision for general fee levels. Unfortunately, Equation (16) is somewhat opaque

in general, so we offer an intuitive and easy to use approximate expression for liquidity

provision in our next result:

Proposition 4.7. Equilibrium Liquidity Provision as ∆ Ñ 0`

Given a fixed price level P , we consider an arbitrary sequence of price intervals, tip∆n, P qunPN,

such that lim
nÑ8

∆n “ 0 where each price interval is selected to contain P for each ∆ pi.e.,

P P rΨip∆,P q,Ψip∆,P q`1sq. In turn, we apply Proposition 3.1 to construct the associated liquid-

ity provision sequence, tΠ‹
ip∆n,P q

unPN, and we thereby derive the limiting liquidity provision,

Π‹pP q, for each price level, P , as follows:

Π‹
pP q :“ lim

∆Ñ0`

1

∆
Π‹
ip∆,P q,0 “

$

’

’

’

&

’

’

’

%

ϕˆV ˆP0ˆ
T
ş

0

fpp,tq dt

erT CpP,T q
if P ě P0

ϕˆV ˆPˆ
T
ş

0

fpp,tq dt

erT CpP,T q´erT pP0´P q
if P ă P0

(34)

where fpp, tq denotes the Q-measure density of pt :“ logpPtq and CpK, τq :“ e´rTEQrpPτ ´

Kq`s refers to the price for a European call option with ETH-USDC as the underlying, K
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as the strike price and τ as the time to maturity.

As a corollary, when the ETH-USDC price follows geometric Brownian motion pi.e.,

σt “ σ ą 0q, then the hypothesis of fpp, tq being continuous is met and Equation (34)

simplifies due to the following well-known results:

fpp, tq “ fN pp; p0 ` pr ´
σ2

2
qt, σ2tq, CpK, τq “ P0 ¨ FN pd`q ´ K ¨ e´rτ

¨ FN pd´q (35)

where fN p¨;µ, vq refers to the density of a normal random variable with mean µ and variance

v, FN denotes the cumulative distribution function for a standard normal random variable

and d˘ is given explicitly as follows:

d˘ “
1

σ
?
τ

´

log
`P0

K

˘

`
`

r ˘
σ2

2

˘

τ
¯

(36)

Notably, ∆ is typically small in practice so that a simplified practical expression for

equilibrium liquidity provision can be deduced by considering the limiting case ∆ Ñ 0`.

In particular, Proposition 4.7 can be applied to yield the following approximate value for

equilibrium liquidity provision for an arbitrary price interval i:

Π‹
i,0 « Π‹

´

P piq
¯

ˆ ∆ (37)

where Π‹ is given explicitly by Equation (34) and an arbitrarily chosen P piq P rΨi,Ψi`1s.

We suggest letting P piq correspond to the geometric average of the interval as follows:

P piq :“
a

ΨiΨi`1 (38)

To provide more detail, Proposition 4.7 fixes a price level, P P R`, and considers the

equilibrium liquidity provision, Π‹
in,0 :“ Π‹

ip∆n,P q,0, for the price interval in :“ ip∆n, P q con-

taining the price P when the DEX’s price grid is defined by an arbitrary ∆n ą 0. We

then construct an arbitrary sequence of t∆nunPN such that lim
nÑ8

∆n “ 0 and generate the
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corresponding equilibrium liquidity provision values, tΠ‹
ip∆n,P q,0unPN where each equilibrium

liquidity provision value is determined as per our equilibrium solution Equation (16). Equa-

tion (34) provides the limit of such an arbitrary sequence (with the appropriate scaling by

1
∆
). Since ∆ is small in practice, we suggest using the well-defined limit point Π‹pP q, after

reversing the scaling (i.e., multiply by ∆), to proxy for liquidity provision in practice. This

suggested process is implemented explicitly through Equations (37) and (38).

As a final point, the limiting case when the size of the price intervals vanish (i.e., ∆ Ñ 0`)

is also useful to highlight the key economic channel driving liquidity provision returns at a

DEX with concentrated liquidity. To that end, recall that Proposition 4.2 establishes that

providing liquidity to the DEX entails holding exclusively ETH below the price interval to

which liquidity is provided and holding exclusively USDC above that price interval. Then,

as ∆ Ñ 0`, each DEX price interval collapses to a single price level and thus the investment

profile from DEX liquidity provision becomes equivalent to that of holding ETH up to the

price level at which liquidity is provided and holding USDC beyond that price level. More

formally, the return from liquidity provision to the DEX for any price level is equivalent to

that from investing in ETH and selling an ETH-USDC European call option where the call

option possesses a strike equal to the price level at which liquidity is being provided and is

sold at its intrinsic value rather than its market value:

Proposition 4.8. Consider an arbitrary sequence of price intervals, tip∆n, P qunPN, such

that lim
nÑ8

∆n “ 0 where each price interval is selected to contain P for each ∆ pi.e., P P

rΨip∆,P q,Ψip∆,P q`1sq. Then, the ex-fee realized return for DEX liquidity provision converges

to that from holding ETH and selling an ETH-USDC European call option with a strike equal

to P if the call option is sold at its intrinsic value:

lim
∆Ñ0`

R
ip∆,P q

P&L “
PT ´ CIpPT , P q

P0 ´ CIpP0, P q
(39)

where CIpPt, Kq :“ pPt ´Kq` denotes the intrinsic value of the call option where the intrin-
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sic value is defined as the payout from exercising an otherwise equivalent American option

immediately.

Note that the numerator of (39), PT ´CIpPT , P q, is equal to the pay-off from holding ETH

and shorting an ETH-USDC call option against that ETH position (i.e., a covered call). In

particular, the call option is characterized by the strike price P and the maturity T where P

represents the price level at which liquidity is being provided and T the investor’s investment

horizon. To provide more context, a liquidity provider receives the ETH price, PT , if the

ETH-USDC price ends below the level at which liquidity is provided (i.e., PT ă P ). In that

case, the call option expires worthless (i.e., CIpPT , P q “ pPT ´ P q` “ 0 when PT ă P ) and

thus the liquidity provider holds only ETH as per a covered call strategy. In the alternative

case that the terminal ETH-USDC price ends above the level at which liquidity is provided

(i.e., PT ą P ) then the liquidity provider receives a pay-off equal to the strike price of P . In

this case, the call option is optimally exercised at strike price P and therefore the investor

is forced to sell her ETH in return for P units of USDC thereby generating the same pay-off

as a covered call strategy.7

5 Conclusion

We study optimal DEX liquidity provision when the DEX allows investors to concentrate

liquidity to pre-specified price intervals (e.g., Uniswap V3). Importantly, and in contrast

to a limit order book, providing concentrated liquidity to a DEX entails providing two-way

liquidity so that whenever an investor’s liquidity is utilized for an exchange, the investor au-

tomatically becomes a liquidity provider of the asset for which their liquidity was exchanged.

For this reason, providing liquidity for an ETH-USDC exchange entails investing in a port-

7Note that the numerator of Equation (39) matches a covered call strategy pay-off but the denominator
in Equation (39) does not match the cost of initiating a covered call strategy. The reason for this is that, as
∆ Ñ 0`, the DEX replicates the call option pay-off in a fashion similar to the “stop-loss start-gain” strategy
of Seidenverg (1988). Importantly, this strategy of replicating a call option does not entail paying the market
value of the call upfront but rather entails paying only the intrinsic value upfront and making additional
payments thereafter because the strategy is not self-financing (see Carr and Jarrow 1990 for details).
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folio of ETH and USDC with dynamic weights that evolve with the underlying ETH-USDC

price. This feature of DEXs with concentrated liquidity generates new trade-offs faced by

liquidity providers and therefore characterizes the level of expected fee revenue necessary

to incentivize liquidity provision to a particular price interval. In particular, we show that

without fees, providing liquidity to a particular price interval is always dominated by directly

investing in either ETH or USDC. Thus, for any given level of fee revenue, liquidity provi-

sion will adjust so that the pro-rata return from fees paid to that price interval offsets the

opportunity cost of investing in other assets (e.g., ETH or USDC). In turn, we characterize

the equilibrium liquidity provision and provide a simple approximate expression that can be

useful for empirical work and comparative statics given the opaque nature of the expression

for equilibrium liquidity provision in the general case.
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Appendices

A Proofs

A.1 Proof of Proposition 3.1

The Q-measure is such that all investments must generate the same expected return as the

risk-free investment (i.e., Equation 14 must hold). Then, applying Equations (6) and (13) to

Equation (14) yields Equation (15). Solving for Π‹
i,0 in Equation (15) then yields Equation

(16).

Equation (17) follows from applying the Q-expectation to Equation (12) and then apply-

ing Tonelli’s Theorem to interchange the expectation and the integral.

In order to derive Equations (18) and (19), note that the equilibrium value L‹
i does not

depend on time t. Therefore, setting t “ 0 and applying Equation (9) to Equation (8) then

implies that, in equilibrium,

Π‹
i,0 “ L‹

i

ˆ

p

b

P̃i,0 ´
a

Ψiq ` p
1

b

P̃i,0

´
1

?
Ψi`1

q ˆ P0

˙

which after rearranging gives our expression for L‹
i .

Finally, Equation (20) follows from applying the previous equilibrium solutions to Equa-

tion (9).

A.2 Proof of Proposition 4.1

Applying the equilibrium solutions from Proposition 3.1 to Equation (8) implies that equi-

librium liquidity for price interval i at time t, Π‹
i,t, can be written as a univariate function,

Π‹
i , of the time t price Pt as follows:

Π‹
i,t “ Π‹

i pPtq :“ USDC‹
i pPtq ` ETH‹

i pPtq ˆ Pt (A.1)
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with USDC‹
i pPtq and ETH

‹
i pPtq denoting the equilibrium USDC and ETH holdings, written

explicitly as a function of the time t price Pt as follows:

USDC‹
i pPtq :“

´

b

P̃i,t ´
a

Ψi

¯

ˆ Li, ETH‹
i pPtq :“

´ 1
b

P̃i,t

´
1

?
Ψi`1

¯

ˆ Li (A.2)

where P̃i,t denotes the projection of Pt onto rΨi,Ψi`1s as per Equation (10).

Note that Π‹
i pPtq is continuously differentiable everywhere but not twice continuously

differentiable everywhere. In particular, Π‹
i pPtq is not twice continuously differentiable at

Pt “ Ψi and Pt “ Ψi`1 even though it is twice continuously differentiable at all other points.

Then, since the hypothesis for the standard Ito’s lemma is not satisfied, we instead invoke a

generalized version of Ito’s lemma for functions twice continuously differentiable at all but

finitely many points (see Chapter 3.6 Section D of Karatzas and Shreve 1991):

dΠ‹
i,t “ dΠ‹

i pPtq “
dΠ‹

i

dPt
dPt `

1

2

d2Π‹
i

dP 2
t

drPt, Pts (A.3)

Notably, although we require a generalized version of Ito’s lemma, this generalized version

reduces to the form of the usual Ito’s lemma because Π‹
i is continuously differentiable even at

the two points at which the second derivative does not exist. Then, to proceed, we compute

the first derivative of Π‹
i ,

dΠ‹
i

dPt
explicitly as follows:

dΠ‹
i

dPt
“ ETH‹

i pPtq (A.4)

Furthermore, we compute the second derivative of Π‹
i ,

d2Π‹
i

dP 2
t
, at all points where this

second derivative exists (i.e., when Pt ‰ Ψi,Ψi`1):

d2Π‹
i

dP 2
t

“

$

’

’

&

’

’

%

0 if Pt R rΨi,Ψi`1s

´
L‹
i

2
?
P 3
t

if Pt P pΨi,Ψi`1q

(A.5)
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Then, Equations (A.4) - (A.5) imply that for Pt R rΨi,Ψi`1s, Equation (A.3) becomes:

dΠ‹
i,t “ ETH‹

i pPtq dPt “ ETH‹
i pPtq ˆ Pt

dPt
Pt

(A.6)

which, in turn, implies:

dΠ‹
i,t

Π‹
i,t

“
ETH‹

i pPtq ˆ Pt
Π‹
i,t

dPt
Pt

“ ω‹
i,t

dPt
Pt

(A.7)

which establishes Proposition 4.1 for Pt R rΨi,Ψi`1s.

Similarly, Equations (A.4) - (A.5) imply that for Pt P pΨi,Ψi`1q Equation (A.3) becomes:

dΠ‹
i,t “ ETH‹

i pPtq dPt ´
L‹
i

4
a

P 3
t

drPt, Pts “ Pt ˆ ETH‹
i pPtq

dPt
Pt

´
L‹
iσ

2
t

?
Pt

4
dt (A.8)

which, in turn, implies:

dΠ‹
i,t

Π‹
i,t

“
Pt ˆ ETH‹

i pPtq

Π‹
i,t

dPt
Pt

´
L‹
iσ

2
t

?
Pt

4Π‹
i,t

dt “ ω‹
i,t

dPt
Pt

´
li,t
Π‹
i,t

dt (A.9)

thereby completing the proof.

A.3 Proof of Proposition 4.2

When Pt ă Ψi, Equation (20) implies USDC‹
i,t “ 0 and thus Pt ă Ψi ùñ ω‹

i,t “ 1, thereby

establishing Equation (24).

When Pt ą Ψi`1, Equation (20) implies ETH‹
i,t “ 0 and thus Pt ą Ψi`1 ùñ ω‹

i,t “ 0,

thereby establishing Equation (26).

For Pt P rΨi,Ψi`1s, Equation (20) implies that USDC‹
i,t “ USDC‹

i pP q :“
´?

P´
?
Ψi

¯

ˆ

L‹
i and ETH‹

i,t “ ETH‹
i pP q :“

´

1?
P

´ 1?
Ψi`1

¯

ˆ L‹
i which, in turn, establishes Equation

(25) whereby
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ω‹
i,t “ ω‹

i pP q :“
ETH‹

i pP q ˆ P

USDC‹
i pP q ` ETH‹

i pP q ˆ P
(A.10)

By direct verification, ω‹
i pΨiq “ 1, ω‹

i pΨi`1q “ 0 and moreover ω‹
i : rΨi,Ψi`1s is continu-

ous. To conclude the proof, we show that ω‹
i is monotonically decreasing. To establish that

result, we first note that
dω‹

i pP q

dP
ď 0 if and only if

d

dP
rETH‹

i pP q ˆ P s ˆ USDC‹
i pP q ´

dUSDC‹
i pP q

dP
ETH‹

i pP q ˆ P ď 0

which after substituting the expression from Equation (20) and rearranging holds if and only

if

2

d

Ψi

Ψi`1

ď

c

Ψi

P
`

d

P

Ψi`1

(A.11)

Finally, in order to show that (A.11) always holds, note that P P rΨi,Ψi`1s implies

Ψi

P
, P
Ψi`1

P r0, 1s. In turn, Ψi

P
ď

b

Ψi

P
and P

Ψi`1
ď

b

P
Ψi`1

and thus Ψi

P
` P

Ψi`1
ď

b

Ψi

P
`

b

P
Ψi`1

so that 2
b

Ψi

Ψi`1
ď

Ψi

P
` P

Ψi`1
is a sufficient condition for inequality (A.11) to hold. Finally,

direct verification yields:

2

d

Ψi

Ψi`1

ď
Ψi

P
`

P

Ψi`1

ô

´

c

Ψi

P
´

d

P

Ψi`1

¯2

ě 0 (A.12)

which completes the proof.

A.4 Lemma A.1

Lemma A.1. Price Interval Above Initial Price Level

For any price interval i such that Ψi ą P0, the following results hold:

(a) For PT ď Ψi, R
i
P&L “

PT

P0

(b) For PT ě Ψi`1, R
i
P&L “

Ψi

P0

?
1 ` ∆

(c) For PT P rΨi,Ψi`1s, Ψi

P0
ď Ri

P&L ď
PT

P0
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Proof.

First note that whenever Ψi ą P0 then P̃i,0 “ Ψi and therefore, after substituting into

Equation (11), Ri
P&L is given explicitly as:

Ri
P&L “

´

b

P̃i,T ´
?
Ψi

¯

`

´

1?
P̃i,T

´ 1?
Ψi`1

¯

ˆ PT
´

1?
Ψi

´ 1?
Ψi`1

¯

ˆ P0

(A.13)

Then, PT ď Ψi implies P̃i,T “ Ψi which, when applied to Equation (A.13), yields (a).

Similarly, PT ě Ψi`1 implies P̃i,T “ Ψi`1 which, when applied to Equation (A.13), yields

(b).

To establish (c), note that when PT P rΨi,Ψi`1s, then P̃i,T “ PT and thus Ri
P&L “

pRi
P&LpPT q with the latter being given explicitly as follows:

pRi
P&LpPT q “

´?
PT ´

?
Ψi

¯

`

´

1?
PT

´ 1?
Ψi`1

¯

ˆ PT
´

1?
Ψi

´ 1?
Ψi`1

¯

ˆ P0

(A.14)

Further, pRi
P&L is differentiable with:

d pRi
P&L

dP
“

1?
P

´ 1?
Ψi`1

1?
Ψi

´ 1?
Ψi`1

ˆ
1

P0

(A.15)

and thus PT P rΨi,Ψi`1s implies:

d pRi
P&L

dP
P r0,

1

P0

s (A.16)

Further, pRi
P&LpPT q is continuous and differentiable over the interval rΨi,Ψi`1s and therefore

by the mean value theorem, for any PT P pΨi,Ψi`1s there exists P 1 P pΨi,Ψi`1s such that

pRi
P&LpPT q ´ pRi

P&LpΨiq “
d pRi

P&L

dP
pP 1

qpPT ´ Ψiq ď
1

P0

pPT ´ Ψiq

where the last inequality comes from the fact that
d pRi

P&L

dP
ă 1

P0
. In addition,

d pRi
P&L

dP
ě 0 implies
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that pRi
P&LpPT q ě pRi

P&LpΨiq “
Ψi

P0
and therefore Ψi

PT
ď Ri

P&L “

´

pRi
P&LpPT q ´ pRi

P&LpΨiq

¯

`

pRi
P&LpΨiq ď

PT

P0
as desired for (c).

A.5 Lemma A.2

Lemma A.2. Price Interval Below Initial Price Level

For any price interval i such that Ψi`1 ă P0, the following results hold:

(a) For PT ď Ψi, R
i
P&L “

PT

Ψi

?
1`∆

(b) For PT ě Ψi`1, R
i
P&L “ 1

(c) For PT P rΨi,Ψi`1s, 1?
1`∆

ď Ri
P&L ď 1

Proof.

First note that Ψi`1 ă P0 and Equation (11) imply that the Ri
P&L is given explicitly as

follows:

Ri
P&L “

´

b

P̃i,T ´
?
Ψi

¯

`

´

1?
P̃i,T

´ 1?
Ψi`1

¯

ˆ PT
?
Ψi`1 ´

?
Ψi

(A.17)

Then, PT ď Ψi implies P̃i,T “ Ψi which, when applied to Equation (A.17), yields (a).

Similarly, PT ě Ψi`1 implies P̃i,T “ Ψi`1 which, when applied to Equation (A.17), yields

(b).

To establish (c), note that when PT P rΨi,Ψi`1s, then P̃i,T “ PT and thus Ri
P&L “

R
i

P&LpPT q with the latter function being given explicitly as follows:

R
i

P&LpP q “

´?
P ´

?
Ψi

¯

`

´

1?
P

´ 1?
Ψi`1

¯

ˆ P
?
Ψi`1 ´

?
Ψi

(A.18)

Note that R
i

P&L is differentiable with the derivative given explicitly as follows:
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dR
i

P&L

dP
“

1?
P

´ 1?
Ψi`1

?
Ψi`1 ´

?
Ψi

ě 0 (A.19)

In turn, PT P rΨi,Ψi`1s implies 1?
1`∆

“ R
i

P&LpΨiq ď Ri
P&L “ R

i

P&LpPT q ď R
i

P&LpΨi`1q

where R
i

P&LpΨiq ď R
i

P&LpPT q ď R
i

P&LpΨi`1q follows from the fact that R is a weakly

increasing function (i.e., Equation A.19). Finally, using the fact that R
i

P&LpΨiq “ 1?
1`∆

and

R
i

P&LpΨi`1q “ 1 we obtain (c).

A.6 Lemma A.3

Lemma A.3. Price Interval Contains the Initial Price Level

For any price interval i such that P0 P rΨi,Ψi`1s, the following results hold:

(a) For PT ď Ψi,
PT

Ψi

?
1`∆

ď Ri
P&L ď

PT

Ψi

(b) For PT ě Ψi`1, 1 ď Ri
P&L ď

?
1 ` ∆

(c) For PT P rΨi,Ψi`1s, 1?
1`∆

ď Ri
P&L ď

?
1 ` ∆

Proof.

As a preliminary step, we define a function, ΓpP,Ψi,Ψi`1q as follows:

ΓpP,Ψi,Ψi`1q “

´?
P ´

a

Ψi

¯

`

´ 1
?
P

´
1

?
Ψi`1

¯

ˆ P (A.20)

Then, note that:

BΓ

BP
“

1
?
P

´
1

?
Ψi`1

(A.21)

and thus P ď Ψi`1 implies that BΓ
BP

ě 0.

We now turn to deriving (a). In particular, whenever PT ď Ψi and P0 P rΨi,Ψi`1s, then
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Ri
P&L can be written as follows:

Ri
P&L “

´

1?
Ψi

´ 1?
Ψi`1

¯

ˆ PT

ΓpP0,Ψi,Ψi`1q
(A.22)

and thus, when PT ď Ψi the fact that
BΓ
BP

ě 0 for P ď Ψi`1 and P0 P rΨi,Ψi`1s implies that:

´

1?
Ψi

´ 1?
Ψi`1

¯

ˆ PT

ΓpΨi`1,Ψi,Ψi`1q
ď Ri

P&L ď

´

1?
Ψi

´ 1?
Ψi`1

¯

ˆ PT

ΓpΨi,Ψi,Ψi`1q
(A.23)

which, by direct verification, is equivalent to (a):

PT

Ψi

?
1 ` ∆

ď Ri
P&L ď

PT
Ψi

(A.24)

To prove (b), note that when PT ě Ψi`1 and P0 P rΨi,Ψi`1s, then Ri
P&L can be written

as follows:

Ri
P&L “

?
Ψi`1 ´

?
Ψi

ΓpP0,Ψi,Ψi`1q
(A.25)

and thus, when PT ě Ψi`1, the fact that BΓ
BP

ě 0 for P0 ď Ψi`1 and P0 P rΨi,Ψi`1s implies:

?
Ψi`1 ´

?
Ψi

ΓpΨi`1,Ψi,Ψi`1q
ď Ri

P&L ď

?
Ψi`1 ´

?
Ψi

ΓpΨi,Ψi,Ψi`1q
(A.26)

which, by direct verification, is equivalent to (b):

1 ď Ri
P&L ď

?
1 ` ∆ (A.27)

Finally, to establish (c), note that when PT P rΨi,Ψi`1s and P0 P rΨi,Ψi`1s, then R
i
P&L can

be written as follows:

Ri
P&L “

ΓpPT ,Ψi,Ψi`1q

ΓpP0,Ψi,Ψi`1q
(A.28)

and thus, when PT P rΨi,Ψi`1s, the fact that BΓ
BP

ě 0 for P ď Ψi`1 and P0 P rΨi,Ψi`1s
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implies:

ΓpΨi,Ψi,Ψi`1q

ΓpΨi`1,Ψi,Ψi`1q
ď Ri

P&L ď
ΓpΨi`1,Ψi,Ψi`1q

ΓpΨi,Ψi,Ψi`1q
(A.29)

which, by direct verification, is equivalent to (c):

1
?
1 ` ∆

ď Ri
P&L ď

?
1 ` ∆ (A.30)

A.7 Proof of Proposition 4.3

The first part of the proof, Equation (27), is implied by Lemma A.1. The second part of the

proof, Equation (28), is implied by Lemma A.2.

A.8 Proposition 4.4

By assumption, both price interval i and j satisfy the conditions of Lemma A.1 (i.e., Ψi ą

Ψj ě P0). In turn, the first part of this result, Equation (29), follows directly from Lemma

A.1. More explicitly, when PT ă Ψj ă Ψi, Lemma A.1 (a) implies Ri
P&L “ Rj

P&L “
PT

P0
;

when PT P rΨj,Ψj`1s, Lemma A.1 (a) and (c) imply Rj
P&L ď

PT

P0
“ Ri

P&L; finally, when

PT ą Ψj`1, Lemma A.1 (a) - (c) implies Rj
P&L “

Ψj

P0

?
1 ` ∆ ď

Ψj`1

P0
ď mint

PT

P0
, Ψi

P0
u. Finally,

note that Ri
P&L ě mint

PT

P0
, Ψi

P0
u as when PT ă Ψi then Ri

P&L “
PT

P0
“ mint

PT

P0
, Ψi

P0
u, when

PT P rΨi,Ψi`1s then Ri
P&L “

Ψi

P0

?
1 ` ∆ ě

Ψi

P0
“ mint

PT

P0
, Ψi

P0
u, and when PT ą Ψi`1 then

Ri
P&L ě

Ψi

P0
“ mint

PT

P0
, Ψi

P0
u. Thus, we have shown that Rj

P&L ď mint
PT

P0
, Ψi

P0
u ď Ri

P&L.

For the second part of the result, Equation (27), we derive it explicitly as follows:

Pp lim
iÑ8

Ri
P&L “

PT

P0
q ě Pp

8
Ť

N“1

8
Ş

i“N

tRi
P&L “

PT

P0
uq ě Pp

8
Ť

N“1

8
Ş

i“N

tPT ă Ψiuq “ lim
NÑ8

Pp
8
Ş

i“N

tPT ă

Ψiuq “ lim
NÑ8

PpPT ă ΨNq “ PpPT ă 8q “ 1 where the second inequality holds due to

Lemma A.1.
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A.9 Proposition 4.5

By assumption, both price intervals i and j satisfy the conditions of Lemma A.2 (i.e., Ψj`1 ă

Ψi`1 ď P0). In turn, the second part of this result, Equation (31), follows directly from

Lemma A.2. More explicitly, when PT ą Ψi`1, Lemma A.2 (b) implies Ri
P&L “ Rj

P&L “ 1;

when PT P rΨi,Ψi`1s, Lemma A.2 (b) and (c) imply Ri
P&L ď 1 “ Rj

P&L; when PT P

rΨj`1,Ψis, Lemma A.2 (a) and (c) imply Ri
P&L “

PT

Ψi

?
1`∆

ď 1?
1`∆

ď 1 “ Rj
P&L; finally,

when PT ă Ψj`1, Lemma A.2 (a) implies Ri
P&L “

PT

Ψi

?
1`∆

ď
PT

Ψj

?
1`∆

“ Rj
P&L.

For the second part of the result, Equation (28), we derive it explicitly as follows:

Pp lim
iÑ´8

Ri
P&L “ 1q ě Pp

8
Ť

N“1

8
Ş

i“N

tR´i
P&L “ 1uq ě Pp

8
Ť

N“1

8
Ş

i“N

tPT ą Ψ´i`1uq “ lim
NÑ8

Pp
8
Ş

i“N

tPT ą

Ψ´i`1uq “ lim
NÑ8

PptPT ą Ψ´N`1uq “ PpPT ą ´8q “ 1 where the second inequality holds

due to Lemma A.2.

A.10 Lemma A.4

Lemma A.4. Limiting Fee Level

For any price level P ą 0, let p :“ logpP q. Then, the following result holds:

lim
∆Ñ0`

1

∆

T
ż

0

QpPt P rΨip∆,P q,Ψip∆,P q`1sq dt “

T
ż

0

fpp, tq dt (A.31)

where ip∆, P q is such that P P rΨip∆,P q,Ψip∆,P q`1s for all ∆ ą 0.

Proof.

Let ψip∆, P q :“ logpΨip∆,P qq and let δ :“ logp1 ` ∆q. Then:

T
ş

0

QpPt P rΨip∆,P q,Ψip∆,P q`1sq dt “
T
ş

0

ψip∆,P q`δ
ş

ψip∆,P q

fpp, tq dp dt

In turn, continuity of fpp, tq in its first argument implies:
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1
δ

T
ş

0

QpPt P rΨip∆,P q,Ψip∆,P q`1sq dt “
T
ş

0

fppip∆,P q, tq dt

where pip∆,P q P rψip∆, P q, ψip∆, P q ` δs Ď rp ´ δ, p ` δs.

Finally, note that ∆ Ñ 0` ô δ Ñ 0` and thus:

lim
∆Ñ0`

1
∆

T
ş

0

QpPt P rΨip∆,P q,Ψip∆,P q`1sq dt

“ lim
∆Ñ0`

∆
logp1`∆q

ˆ lim
δÑ0`

1
δ

T
ş

0

QpPt P rΨip∆,P q,Ψip∆,P q`1sq dt

“ lim
δÑ0`

T
ş

0

fppip∆,P q, tq dt

“
T
ş

0

lim
δÑ0`

fppip∆,P q, tq dt

“
T
ş

0

fpp, tq dt

The second-to-last line follows from the Bounded Convergence Theorem, whereas the last

line follows from continuity of fpp, tq and pip∆,P q P rp´δ, p`δs for all δ. To provide more de-

tail on the former, note that lim sup
∆Ñ0`

T
ş

0

|fppip∆,P q, tq| dt ă SˆT ă 8 where S :“ maxtfpρ, τq :

ρ P rp´ ε, p` εs, τ P r0, T su ă 8 for any ε ą 0 and where the existence of a finite maximum

follows from continuity of fpp, tq.

A.11 Lemma A.5

Lemma A.5. Limiting Ex-Fee Portfolio Value

For any price level P ą 0, the following result holds for any t P r0, 1s:

lim
∆Ñ0`

Π‹
ip∆,P q,t

L‹
i

´?
1 ` ∆ ´ 1

¯ “

$

’

’

&

’

’

%

Pt?
P

if Pt ă P

?
P if Pt ě P

(A.32)

where ip∆, P q is such that P P rΨip∆,P q,Ψip∆,P q`1s for all ∆ ą 0.
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Proof.

For Pt ă P , the result arises by direct verification, applying Equation (20) to Equation (8):

lim
∆Ñ0`

Π‹
ip∆,P q,t

L‹
i

´

?
1`∆´1

¯ “ lim
∆Ñ0`

´

1?
Ψip∆,P q

´ 1?
Ψip∆,P q`1

¯

ˆPt

?
1`∆´1

“ lim
∆Ñ0`

Pt?
Ψip∆,P q`1

“ Pt?
P

For Pt ą P , the result also arises directly, by applying Equation (20) to Equation (8):

lim
∆Ñ0`

Π‹
ip∆,P q,t

L‹
i

´

?
1`∆´1

¯ “ lim
∆Ñ0`

?
Ψip∆,P q`1´

?
Ψip∆,P q

?
1`∆´1

“ lim
∆Ñ0`

a

Ψip∆,P q “
?
P

For the case of Pt “ P , it is useful to define Π̃pX,Ψi,Ψi`1q as follows:

Π̃pX,Ψi,Ψi`1q :“
´?

X ´
a

Ψi

¯

`

´ 1
?
X

´
1

?
Ψi`1

¯

ˆ X (A.33)

Direct inspection reveals
Π‹

ip∆,P q,t

L‹
i

“ Π̃pPt,Ψip∆,P q,Ψip∆,P q`1q and also that BΠ̃
BX

ě 0 when-

ever X ď Ψi`1. In turn, we have the following result:

Π̃pΨip∆,P q,Ψip∆,P q,Ψip∆,P q`1q ď
Π‹
ip∆,P q,t

L‹
i

ď Π̃pΨip∆,P q`1,Ψip∆,P q,Ψip∆,P q`1q (A.34)

Moreover, applying Π̃pΨip∆,P q,Ψip∆,P q,Ψip∆,P q`1q “

´

1?
Ψip∆,P q

´ 1?
Ψip∆,P q`1

¯

ˆ Ψip∆,P q “
´?

1 ` ∆ ´ 1
¯

Ψip∆,P q?
Ψip∆,P q`1

and Π̃pΨip∆,P q`1,Ψip∆,P q,Ψip∆,P q`1q “
a

Ψip∆,P q`1 ´
a

Ψip∆,P q “
´?

1 ` ∆ ´ 1
¯

a

Ψip∆,P q to Equation (A.34) and taking the limit as ∆ Ñ 0` completes the

proof as follows:

?
P “ lim

∆Ñ0`

Ψip∆,P q
a

Ψip∆,P q`1

ď lim
∆Ñ0`

Π‹
ip∆,P q,t

L‹
i

´?
1 ` ∆ ´ 1

¯ ď lim
∆Ñ0`

a

Ψip∆,P q “
?
P (A.35)

45



A.12 Lemma A.6

Lemma A.6. Limiting Ex-Fee Portfolio Return

For any price level P ą 0, the following result holds:

lim
∆Ñ0`

R
ip∆,P q

P&L “
mintPT , P u

mintP0, P u
“
PT ´ pPT ´ P q`

mintP0, P u
“
P ´ pP ´ PT q`

mintP0, P u
(A.36)

where ip∆, P q is such that P P rΨip∆,P q,Ψip∆,P q`1s for all ∆ ą 0.

Proof.

Equation (7) yields:

R
ip∆,P q

P&L “
Π‹
ip∆,P q,T

Π‹
ip∆,P q,0

“

Π‹
ip∆,P q,T

L‹
i

`

?
1`∆´1

˘

Π‹
ip∆,P q,0

L‹
i

`

?
1`∆´1

˘

Taking ∆ Ñ 0` and applying Lemma A.5 then implies the result:

lim
∆Ñ0`

R
ip∆,P q

P&L “ lim
∆Ñ0`

Π‹
ip∆,P q,T

L‹
i

`

?
1`∆´1

˘

Π‹
ip∆,P q,0

L‹
i

`

?
1`∆´1

˘

“

lim
∆Ñ0`

Π‹
ip∆,P q,T

L‹
i

`

?
1`∆´1

˘

lim
∆Ñ0`

Π‹
ip∆,P q,0

L‹
i

`

?
1`∆´1

˘

“
mintPT ,P u

mintP0,P u

where the last equality follows by direct verification.

A.13 Lemma A.7

Lemma A.7. Limiting Ex-Fee Expected Return

For any price level P ą 0, the following result holds:

lim
∆Ñ0`

EQ
rR

ip∆,P q

P&L s “
P0e

rT ´ erTCpP, T q

mintP0, P u
(A.37)

where ip∆, P q is such that P P rΨip∆,P q,Ψip∆,P q`1s for all ∆ ą 0 and CpK, τq :“ e´rTEQrpPτ´

Kq`s refers to the price of a European call option with ETH-USDC as the underlying, K as

the strike price and τ as the time to maturity.
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Proof.

Lemmas A.1 - A.3 imply that for all ε ą 0:

lim sup
∆Ñ0`

Ri
P&L ď p1 ` εq ˆ maxt

P

P0

,
?
1 ` ∆u ă 8 (A.38)

and thus the tail of tRi
P&Lu∆ is bounded so that the Bounded Convergence Theorem implies:

lim
∆Ñ0`

EQ
rR

ip∆,P q

P&L s “ EQ
r lim
∆Ñ0`

R
ip∆,P q

P&L s (A.39)

Moreover, Lemma A.6 further implies:

lim
∆Ñ0`

R
ip∆,P q

P&L “
mintPT , P u

mintP0, P u
“
PT ´ pPT ´ P q`

mintP0, P u
(A.40)

where the second equality follows from mintx, yu “ x ´ px ´ yq`.

Finally, Equation (5) and Ere
1
2

T
ş

0

σ2
t dWt

s ă 8 imply that Mt :“ e´rtPt is a Q-martingale

and thus EQrPT s “ erTEQrMT s “ erTM0 “ erTP0. In turn, Equations (A.39) and (A.40)

imply the desired result:

lim
∆Ñ0`

EQ
rR

ip∆,P q

P&L s “
EQrPT s ´ EQrpPT ´ P0q

`s

mintP0, P u
“
P0e

rT ´ erTCpP, T q

mintP0, P u
(A.41)

A.14 Proof of Proposition 4.7

This result follows directly from Lemmas A.4 and A.7.
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A.15 Proof of Proposition 4.8

Proof.

This follows directly from Lemma A.6. More explicitly:

lim
∆Ñ0`

R
ip∆,P q

P&L “
mintPT , P u

mintP0, P u
“
PT ´ pPT ´ P q`

P0 ´ pP0 ´ P q`

where the first equality is established by Lemma A.6 and the second equality follows from

the identity mintx, yu “ x ´ px ´ yq`.
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