
Machine learning in a dynamic limit order market.

R. Philip*1

1Discipline of Finance, The University of Sydney

September 22, 2021

Abstract

We use a novel machine learning approach to tackle the problem of limit order management.
Applying our framework to data, we show that the most important variable for a trader to
consider is the price level of their order, followed by the queue sizes of the order book, volatility
and finally queue position. Further, we show the option to cancel a limit order is valuable and
contributes approximately 15% of a limit order’s total expected value. This paper takes an im-
portant step towards describing pervasive features and dynamics that exist in financial markets.

Keywords: Limit order markets, machine learning, queue size, optimal limit order
JEL Classification: G10, G20, D40

*Corresponding author. E-mail: richard.philip@sydney.edu.au
This paper has benefited from the comments of Michael Brolley, James Brugler, David Cimon, Bjorn Hagstromer,
Amy Kwan, Tom McInish, Ryan Riordan, Gideon Saar, Andriy Shkilko, Vincent van Kervel, Ester Felez Vinas,
Yajun Wang, Ying Wu, Chen Yao, Marius Zoican, and the audiences at the SFS Cavalcade Asia Pacific and the
FIRN annual meeting. Thank you to the participants at The University of Sydney Business Analytics seminar series
and Wilfrid Laurier University seminar series and discussions with the team at Vivienne Court Trading for their
insightful comments.

1



1 Introduction

A limit order trader faces several difficult decisions. First, the trader must decide the price level to

submit their order. After order submission, as market conditions change, the trader must decide if

they should cancel or update their resting limit order, to manage adverse selection risk and execution

uncertainty. These decisions are non-trivial; the dimensionality of the problem is extremely large

and decisions are path dependent. With limit orders becoming ever more prevalent in the modern

trading era, a thorough understanding of this decision making process is important for academics,

regulators and practitioners alike.

Despite the complexity of the problem, theory has made significant strides in modeling the

way traders manage their orders. Among others, Parlour (1998), Foucault (1999), Goettler et al.

(2005), Foucault et al. (2005), Goettler et al. (2009), Rosu (2009), Ricco et al. (2020) and Rosu

(2020) propose multi-period equilibrium models, which represent limit order markets as sequential

games. In these models, traders arrive sequentially and submit, or update, the optimal order

that maximizes their gains from trade. The advantage of these theoretical models is that they

provide an understanding of how agents optimally trade and the factors a trader must consider

when making decisions under a set of strict assumptions. Further, by relaxing certain assumptions,

we gain a deeper understanding into how different channels affect trading behavior. However,

due to the complexity of the problem, to gain analytical tractability, these assumptions are often

oversimplifying, which can come at the cost of realism (see Parlour and Seppi (2008)). Thus, it is

important to empirically verify the predictions made by these theoretical models. Unfortunately,

due to a lack of technology, many of the predictions made by theory have not been empirically

tested.

In this paper, we present a novel machine learning approach that enables us to empirically test

which factors are important in a trader’s limit order management process, as predicted by theory.

Specifically, for over 18,000 unique market states, we empirically estimate the expected profit of a

resting limit order conditional on optimal management over its life cycle. As a consequence, our

framework produces one of the richest sets of expected profit estimates, conditional on a broad

range of potential market states. The variables that define our market states include the price
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level the limit order rests at, the shape of the order book, the queue position of the limit order

and volatility. Our technique allows us to uncover several features. First, we determine when it is

optimal to leave or cancel a resting limit order for different market conditions. Second, we rank

the relative importance of different variables that define our market states. Finally, we identify the

market conditions when the endogenous option to cancel is most valuable and uncover pervasive

features and dynamics that exist in financial markets.

Recently, Moritz and Zimmermann (2019) demonstrate how ML can help a portfolio manager

optimally combine multiple factors to estimate expected returns. However, limit order management

has additional complexity. Not only must the trader consider how to optimally combine multiple

factors, her trades or behavior may have market impact that can change these factors. Moreover, as

market conditions or factors vary, she can revise her expectations and cancel the order if required.

Thus, the trader has a sequential decision making process that is path dependent, akin to when

one should exercise an American option.

To address this additional complexity, we cast limit order management as a sequential Marko-

vian decision process within a reinforcement learning (RL) framework. RL is a type of machine

learning that enables an agent to learn the optimal action, given the current environment, via trial

and error using feedback from the agent’s own actions and experiences. In our setup, at short

periodic time intervals, our trader faces the same decision: to leave or cancel their resting limit

order. This decision making process repeats until the trader’s limit order executes or is canceled.

For each periodic decision, our trader maximizes expected profit and leaves (cancels) their limit

order if the order has a positive (negative) expected profit conditional on current market conditions

and conditional on the future optimal management of the limit order. Thus, our framework cap-

tures the endogenous option to cancel based on the trader’s future expectations. As a result, the

conditional expected profit at time t is a recursive estimate based on all future conditional expected

profits and their corresponding likelihoods. To overcome the recursive nature of the problem, we

empirically estimate the conditional expected profit via a value iterative update function, known

as Q-learning.

The key estimate in our trader’s decision making process is the limit order’s conditional ex-
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pected profit. We draw on the existing theoretical literature to determine the variables or market

conditions that could affect the conditional expected profit of a limit order. Parlour (1998) provides

theoretical arguments that strategic traders should consider queue lengths on both sides of the limit

order book. Further, Yueshen (2014), Li et al. (2020) and Yao and Ye (2018) argue that there is

an advantage to being at the top of the queue, due to the time priority rule. Last, Foucault (1999)

finds that volatility is a main determinant for limit order management. Using these concepts, we

define a state space for a bid order, which considers the lengths of the queues on the first three

levels of the bid side of the order book and the length of the queue on the best ask price. The bid

limit order can sit at the best bid, one tick behind the bid, or two ticks behind the bid. We also

consider the limit order’s position within the queue and volatility. For tractability, we estimate a

model in which we discretize our states, resulting in a state space of 18,001 unique market states.

At any point in time, the limit order exists in one of the market states, which then transitions to a

different market state in the future. Because our model is completely data driven, our framework

provides the flexibility to use alternate variables to define the state space.

Application of our technique to empirical data confirms several theoretical predictions. First,

consistent with Yueshen (2014), Li et al. (2020) and Yao and Ye (2018), we find that queue priority

is advantageous. Further, we find the benefits of favorable queue priority is more pronounced as

the order moves closer to the best price, at which execution is most likely.

Next, consistent with Parlour (1998), we show that the larger the queue size behind a resting

limit order, the higher the expected profitability of the order, and the larger the queue size in front

of a resting limit order, the lower the expected profitability of the order. We also find that an

increase in queue size on the opposite side of the book decreases (increases) the expected profit

of the limit order if it is at (behind) the best price. This difference in effect is due to a trade off

between adverse selection and execution probability. As the queue size on the other side of the

book increases, the risk of adverse selection and execution probability both increase. For orders

resting at the best price, adverse selection outweighs execution probability. In contrast, for orders

resting behind the best price, execution probability outweighs adverse selection.

Last, Foucault (1999) predicts volatility has two opposing forces on a limit order’s profitability.
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The first force suggests an increase in volatility decreases the expected profit of a limit order, via an

increase in the risk of adverse selection. However, the second force suggests an increase in volatility

increases the expected profit of a limit order as liquidity providers counteract losses from an increase

in adverse selection risk by widening the bid ask spread. Due to discrete price ticks, we demonstrate

that volatility has mixed effects depending on whether the stock is tick constrained. For stocks that

are most tick constrained, an increase in volatility decreases the expected profit. In this scenario,

liquidity providers do not widen spreads to compensate for the increased picking off risk. In contrast,

for less tick constrained stocks, we find that an increase in volatility increases the expected profit

of a limit order as liquidity providers are willing to widen their spreads as compensation for the

increase in picking off risk. Because price levels are discrete, liquidity providers widen spreads to

price levels that over compensate, rather than under compensate, for the increase in losses due to

picking off risk.

Using a ML technique known as Mean Decrease in Accuracy (MDA), we rank the relative

importance of the different variables that define our market states. We find that the price level at

which the limit order rests is the most important variable for a trader to consider. Following price

level, the sizes of the queues at different price levels are next most important, then volatility and

last the queue position of the order.

Our technique also allows us to determine how valuable is the option to cancel a limit order and

under what market conditions is the option most valuable. We find the option to cancel represents

15% of a limit order’s total expected value, on average. However, during periods of high ex-ante

adverse selection risk, which we proxy by order book pressure, this option becomes even more

valuable.

The advantage of our approach is four-fold. First, rather than directly applying ML to a

problem, which can obscure economic intuition (see Chinco et al. (2019)), we cast optimal limit

order management within a theoretical framework. By doing so, we are able to identify economically

important variables for limit order management and rank their relative importance. Second, while

our technique does model limit order management, we differ from traditional theory models in that

our approach is completely driven by empirical data and does not require an equilibrium for all
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market particpants. Thus, our empirical approach is similar to Hollifield et al. (2004) as we remove

the need for assumptions about trader behavior or market dynamics. By removing assumptions

about trader behaviour, we determine optimal order management under real market conditions,

where traders may not necessarily behave rationally, or follow a stylized set of assumptions. This

feature allows us to determine if traders behaviors are consistent with existing theories. Third,

similar to Goettler et al. (2005) and Goettler et al. (2009), our approach can handle a state-action

space with large dimensionality, which enables us to capture a wide range of market states and

price levels in the limit order book. Last, as in Goettler et al. (2009), our limit order’s expected

profit estimates are conditional on the future endogenous option to cancel. Thus, we can estimate

the option value of cancelling a limit order.

We provide three main contributions to the literature. First, O’Hara (2015) highlights that in

the modern era, markets and trading have changed, with limit orders now playing a more crucial

role. As a consequence of this change, O’Hara (2015) issues a call to update the learning models and

empirical methods used. Our paper answers this call, by proposing a novel technique that provides

a deeper understanding of limit order management than traditional learning models or empirical

methods allow. Second, our technique allows us to empirically test several theoretical predictions.

Moreover, using a ML technique know as Mean Decreased Accuracy (MDA), we are able to rank

the relative importance of variables that theory has identified as important to a limit order trader.

Third, we provide new insights on the value of the option to cancel a limit order. While order

cancellations have grown significantly in recent years, the literature has not fully considered the

value a trader should place on the option to cancel.

We are not the first to use RL for solving a trader’s objective function. Nevmyvaka et al.

(2006) and Bertsimas and Lo (1998) demonstrate the efficacy of RL in solving the problem a trader

faces when required to execute a large block over a pre-defined time period. However, our trader

is not forced to execute a large order and therefore has a significantly different objective function.

Our trader’s goal is to optimally manage their limit orders such that they make the most profitable

opportunistic trades based on current market conditions. Thus, our objective function allows us to

estimate the expected profit of a limit order and identify key variables in a traders decision making

process.
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2 Method

2.1 Intuition

Consider a trader who wants to optimally manage their limit orders to ensure that only limit orders

with a positive expected value execute. The dynamics of the limit order book make this task non-

trivial, as the trader must constantly monitor her resting limit orders and cancel them if they are

expected to lose money. To achieve this task, the trader must estimate the expected profit of a

limit order conditional on the current state of the market and future optimal order management

over the order’s life cycle.

Estimating the expected profit of a limit order conditional on future optimal management

requires the trader to consider the evolution of market conditions and their likelihoods of occurring.

The trader must consider the evolution of market conditions until two points in time, 1) when the

order executes, or 2) when the order is canceled. However, the decision to cancel an order is

endogenous and should occur when the limit order has a negative expected profit.

Figure 1 provides an illustration of the trader’s problem. Initially the limit order book is in a

certain state at time t0. The gray rectangles represent the volume available at the ask prices and

the white rectangles represent the volume available at the bid prices. The best bid price and ask

price is 13 and 14, respectively, resulting in a bid ask spread of 1. Assume a trader submits a limit

buy order at t0 at a price of 12 (one tick behind the best available bid), which we depict as a black

rectangle in Figure 1.

[Insert Figure 1]

The trader then monitors the limit order book until the volume on the current best bid is

removed, which occurs at t1. For illustrative purposes, we assume the market has evolved to one

of only two possible market states at t1; State A or State B. In State A, since t0, other market

participants have submitted buy limit orders at 12 and thus, our trader’s order has moved up the

queue at 12. Further, market participants have added buy limit orders at 11 and some of the sell
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limit orders at 14 have been removed, either due to cancellations or executions. In contrast, in

State B, no new market participants have submitted additional buy limit orders. Rather, a large

sell limit order at 13 has been submitted, removing the bid at 13 which existed at t0.

If the volume available on the bid side of the order book is significantly larger (smaller) than

the volume available on the ask side of the order book, the midprice is more likely to increase

(decrease) in the near future (see Cao et al. (2009)). Therefore, the order in State A has a positive

expected value as the volume on the bid side is much larger than the volume on the ask side,

suggesting a future price rise. In contrast, the order in State B has a negative expected value as

the volume available on the ask is much larger than the volume available on the bid, indicating the

price is likely to decline in the future and the order would be adversely selected.

The expected profit of the limit order submitted at t0, if left unmonitored, is the expected

value in State A and B multiplied by their respective probabilities of occurring. Therefore, if

the probability of transitioning to State B is much higher than the probability of transitioning to

State A, then it is possible that the expected profit of the limit order submitted at t0, when left

unmonitored, is negative. However, if we allow monitoring and cancellation of the limit order,

then the expected profit of the order becomes positive as the trader would cancel the order if the

market transitions to State B, which results in a profit of 0, whereas the trader would leave the

limit order if the market transitions to State A, where the order has a positive expected value. In

this oversimplified example, it is evident that the option to cancel can change an order from having

a negative expected profit, to a positive expected profit.

In this illustrative example, we make two tenuous assumptions. First, we assume the market

can only transition to two possible states after the trader submits their order. In reality, the market

can transition to an almost infinite number of states. Second, we arbitrarily assert the limit order

has a positive expected value when in State A, whereas the limit order has a negative expected

value when in State B. To acquire accurate estimates of the expected value, we must estimate the

expected value of the limit order while in State A and B (time t1) if optimally managed over its

life cycle, which is the exact same problem we are trying to solve at t0. To overcome these two

limitations, we use a recursive state space technique known as reinforcement learning (RL) which
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can handle many states and capture the recursive nature of the problem.

2.2 Reinforcement Learning

Typically in a RL framework, an agent has knowledge of the current state, s, and then makes an

action, a. Jointly, we refer to this state-action pair as an experience tuple defined as 〈s, a〉. If there

are S states and A actions, then the agent has the choice of making A possible actions in S different

states, which implies there are S × A unique experience tuples. We assume that each experience

tuple can transition the agent to a new state, s′, with probability T (〈s, a〉, s′). For each action in a

given state, the agent receives an immediate reward, R(s, a). The agent’s objective function is to

maximize the total future reward. The agent maximizes this reward by choosing the appropriate

actions for each state that maximize the long run discounted sum of all the immediate rewards

received for each action in the future.

More formally, if we define the rules or policy an agent must follow as π, the optimal value of

a state is computed as

V ∗(s) = max
π

E
( ∞∑
t=0

γtE[R(st, at)]
)
, (1)

where E[R(st, at)] is the expected immediate reward at time t and γ is a discount factor bound

between 0 and 1. V ∗(s) is the expected infinite discounted sum of reward the agent receives if

they start in state s and execute the optimal policy defined by π∗ moving forward. In our setup,

the optimal policy, π∗, defines how the trader should optimally manage their limit order moving

forward (i.e., the action the trader should take given current market conditions and current order

positioning). Similarly, the reward is the profit generated from earning the spread or favorable

price movements after the order has executed.

For every experience tuple, there is an associated Q-value, Q∗(s, a), which is the expected

infinite discounted sum of reward the agent gains if the agent takes action a while in state s, then

subsequently follows the optimal policy path. Using (1), we note that Q∗(s, a) can be expressed
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recursively as:1

Q∗(s, a)︸ ︷︷ ︸
long run expected profit

from taking action a

= E[R(s, a)]︸ ︷︷ ︸
expected immediate

profit from
taking action a

+γ
∑
s′∈S

probability of
transitioning to
future state s′

by taking
action a︷ ︸︸ ︷

T (〈s, a〉, s′)

expected long
run profit from
taking optimal
action a′ when

in state s’︷ ︸︸ ︷
max
a′

(Q∗(s′, a′))︸ ︷︷ ︸
expected future profit

from taking future optimal
actions, a′, while in future states, s′

, (2)

where s′ and a′ define future states and actions, respectively. Equation (2) is the basis of our

framework. In our setup, Q∗(s, a) is the expected long run profit the limit order will make if the

trader takes action a while in state s and in all future states s′ takes the optimal action a′. We

observe that this expected long run profit equals any immediate profit for taking action a plus the

expected long run profit the trader receives in future state s′ if they make optimal future action

a′. Recognizing that the future state s′ is not known with certainty, our RL model assigns different

transition probabilities, T (〈s, a〉, s′), for all possible future states. Equation (2) is recursive because

both the right hand side and the left hand contain a Q∗(s, a) term. Thus, for estimation we use an

iterative learning rule known as Q-learning.2

Estimating (2) requires us to first define a state action space that reflects the problem of

optimal limit order management. Specifically, the states should capture current market conditions

and information about the order, while the actions should reflect the decisions available to the

trader. Next, estimation requires two key input variables: the immediate reward and the transition

probabilities. In the following sections, we describe how we cast the optimal limit order management

problem within the RL framework. Specifically, we explain the basic timing of our trader’s decision

process, define our state and actions space and describe how we empirically estimate the input

variables; the immediate reward and the transition probabilities.

1See Watkins and Dayan (1992) for a full derivation.
2We provide a detailed illustrative example of the learning rule in Appendix C
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2.2.1 Timing

Figure 2 depicts the timing of our trader’s decisions. In essence, the trader follows a recursive

Markovian decision making system. At the start of each interval, the trader makes a decision based

on observations of the current market conditions, for example, the existing shape of the order book

and their own private information about their limit order’s status. The trader decides to leave or

cancel their existing limit order. At the start of the subsequent interval, the trader repeats the

same decision making process. This decision making process repeats continuously until the limit

order executes or the trader cancels their order. If the trader’s limit order executes, the trader

continues to monitor market conditions to observe the long term profit of the executed order.

[Insert Figure 2]

This recursive decision making system allows the trader to expose the same limit order for

multiple consecutive intervals, during which time she can monitor the order’s queue position and

market conditions. If at any point in time the order appears to have a high chance of adverse

selection (measured by a negative expected profit), the trader cancels the order.

In our empirical section, we select a short time interval of 100ms. Choosing a short time interval

offers three advantages. First, a short interval more closely reflects a trader who continuously

monitors their orders. Second, a shorter interval provides more data points for model estimation.

Third, we are able to make better estimates on the likelihood of transitioning to future market

conditions as dramatic changes in market conditions are less likely to occur over short intervals.

2.2.2 Actions

The A actions available define all possible decisions or individual actions, a, a trader can make

given the current state. In our setup, the trader can make two possible actions. The trader can

either cancel their resting limit order, which we define as C, or the trader can leave their existing

limit order in the queue by taking no action, which we define as NA. Taken together, the trader’s
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action space is defined by

a ∈ {C,NA}. (3)

Figure 2 depicts the timing of the actions. Specifically, the action is made at the beginning of

the interval. To ensure that the trader’s limit order is only at price levels in our state space, if the

market transitions to a state where the trader’s resting limit order is no longer in the state space,

then the action NA is overruled by action C, which means the resting limit order is canceled. This

overruling forces the trader to cancel resting limit orders if the best bid and offer has moved far

away from the trader’s resting limit order.

2.2.3 States

The state, st, reflects information available to the trader about the environment at time t. We

decompose the environment into two sets of variables that reflect the current state: private and

public. The public variables represent current market conditions available to all market participants.

Parlour (1998) suggests that queue sizes in the limit order book is a consideration for trader’s

strategic behavior. For this reason, we include the size of the queue at the best bid, one tick below

the best bid and two ticks below the best bid, which we define as qB0 , qB1 and qB2 , in our state

space. Similarly, we include the size of the queue on the opposing side of the book (the best ask),

which we define as qA0 . Given queue sizes are essentially continuous, for tractability, we reduce

the dimensionality of the state space by discretizing queue sizes. Specifically, we categorize queue

lengths into five quintiles; extremely long (ELo), long (Lo), normal (No), short (Sh) and extremely

short (ESh).3 Moreover, Foucault (1999) finds that volatility is a main determinant for limit order

management. For this reason, we also include volatility, V , as a public variable, which we discretize

into terciles; low (Low), medium (Med) and high (Hi).

The private variables we use to define our state space capture information that is unique to

the trader. Specifically, we capture the trader’s current inventory position, I, which in our model

3To further reduce dimensionality, we discretize the queue size at qB2 to only three terciles.
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is either 0 (no position) or 1 (long). We also include a variable, L, that captures the price level the

traders limit order is resting at. We let L take on the value of i ∈ 1, 2, 3 if the trader has a resting

limit order submitted at level i of the order book. Finally, some argue there is an advantage to

being at the top of queue, as the order has time priority (see Yueshen (2014), Li et al. (2020) and

Yao and Ye (2018)). For this reason, we include the queue position of any resting limit orders in our

state space, which we define by Q. Similar to our previous variables, for tractability, we reduce the

dimensionality of our queue position to five quantiles, which we define as top, top-middle, middle,

middle-back and back.

Last, to ensure we estimate the expected profit of a single limit order in isolation, we include a

state which captures when the trader cancels their order. This state is a terminal absorbing state

where the trader remains once they cancel their order. We define this terminal state by setting

Q = X and L = X. Taken together, these definitions let us express the current market state, s, as

a vector

s = [I, L,Q, qB0 , qB1 , qB2 , qA0 , V ] (4)

where

I ∈ {0, 1}

L ∈ {0, 1, 2, X}

Q ∈ {top, top-middle,middle,middle-back, back,X}

qj ∈ {ELo,Lo,No, Sh,ESh},∀j ∈ {B0, B1, B2, A0}

V ∈ {Low,Med,Hi}

In our setup, we restrict the trader to executing only one limit order. We achieve this restriction
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by ensuring no additional orders exist once a long position is achieved. As a result, the states when

the trader is long are only defined by the four public limit order book information variables and

volatility (qB0 , qB1 , qB2 , qA0 , V ). This restriction implies there are m possible states when the trader

is long.4 In contrast, when the trader has no inventory and is working their limit order, the state is

defined by the public variables plus the private variables (queue position and the price level of the

resting limit order). The additional private variables results in n possible states when the trader

has no inventory.5 Collectively, in this setup, we have n states when the trader has no inventory,

m states when the trader is long and one absorbing state for when the trader cancels their order,

thereby resulting in m+ n+ 1 total possible states, where n > m and m+ n+ 1 = S.

2.2.4 Transition matrix

With the states and action defined, we require transition probability estimates. Recall that if the

limit order is currently in state s and the trader makes action a, the order transitions to states s′

with probability T (〈s, a〉, s′). Since the transition probabilities from state i to all other states must

sum to 1 for a given action, for all i and a,
∑S

j=1 T (〈si, a〉, sj) = 1.

Because our framework has S unique market states, each action has an S × S transition

probability matrix. When the trader makes no action (i.e., action NA), which leaves their resting

limit order, the future state the limit order transitions to is not known with certainty. Thus, we

empirically estimate the S × S transition probabilities for action NA. To estimate T (〈si, NA〉, sj)

we determine the number of times we observe a limit order in state si, followed by the limit order

being in state sj in the subsequent interval, and express this number as a fraction of all observations

of limit orders in state si. More formally, if we define Ni,j |NA as the number of times a limit order in

state i transitions to state j, it is straightforward to show that the MLE estimate of T (〈si, NA〉, sj)
4In our setup m = 1, 125 as we have three public limit order book information variables (qB0 , qB1 , qA0), each with

five possible values, one order book information variable with three possible values (qB2) and one volatility variable
(V ) with three possible values. Thereby resulting in 53 × 3× 3 possible combinations.

5In our setup n = 16, 875. We have 1,125 possible public states, plus the private price level and queue position
variables, which have three and five possible values respectively. Collectively, these variables result in 1, 125× 5× 3
possible combinations.
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is

T (〈si, NA〉, sj) =
Ni,j |NA∑S
j=1Ni,j |NA

. (5)

In contrast, when a trader cancels their limit order they transition to the absorbing cancel

state with certainty. For this reason, we do not require empirical estimates for the S×S transition

probabilities for action C, as the probability of transitioning to the absorbing cancel state is always

1. To ensure the trader only has one resting limit order, we restrict any state where the trader has

an inventory position, or has already canceled their order, to not having a resting order. Because

of this restriction, the action to cancel is prohibited and has a zero probability for all states where

the trader has a long inventory position, or has canceled their order.6

To generate the full transition matrix, T , that captures all state actions, we vertically stack

the S × S transition matrix for action NA on top of the S × S transition matrix for action C.

2.2.5 Immediate reward

An action from a given state can transition the trader to a new state and produce an immediate

reward in the process. In our setup, the immediate reward captures any profit generated during

the transition from the current state to the next. Therefore, if the trader has a positive inventory

when in state s, the immediate reward for the transition from state s to s′ is the observed change

in midpoint during the transition. If the trader has no inventory in state s and no order executes

during the transition from state s to s′, then the immediate reward must be zero. If a trader has no

inventory in state s but their order executes during the transition from s to s′, then the immediate

reward is the midpoint price observed in state s′ less the limit order’s execution price. Formally, if

we define the midpoint price in state i as midi, then the immediate reward from making action a

while in state s that results in a transition to state s′ is

6In Appendix A, we provide a detailed description of the structure and design of the transition matrices for each
action.
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R(〈s, a〉, s′) = (mids′ −mids)× Is + (mids′ − execPrices)× Execs,s′ , (6)

where Is equals 1 if the the trader has a long inventory position when in state s and 0 otherwise

and execPrices equals the price of the limit order and Execs,s′ equals 1 if the limit order executes

during the transition from state s to s′ and zero otherwise.

To compute the immediate reward for each transition, we require empirical estimation when the

trader leaves their order (action NA). To obtain these estimates, we first compute the immediate

reward using equation (6) for every observation in the data. Then for each state-action transition,

we compute the average immediate reward across all observations that belong to that state-action

transition.7 In contrast, when the trader cancels their order, the immediate reward must be zero

as they have no limit orders executed and no inventory position. Therefore, for action C, the S×S

immediate reward matrix contains only zeros.

Similar to the transition matrix, we create the immediate reward matrix for all experience

tuples by vertically stacking the immediate reward matrix for action NA and the immediate reward

matrix for action C, resulting in a matrix of dimension 2S×S. We compute the expected immediate

reward for taking action a while in state s as

E[R(s, a)] =
∑
s′∈S

T (〈s, a〉, s′)×R(〈s, a〉, s′). (7)

3 Data

We use ITCH data for the Australian Securities Exchange (ASX) extracted from the SIRCA

database for the period July 3, 2017 to September 29, 2017. Table 1 contains summary statis-

7In Appendix B, we provide a detailed description of the structure and design of the immediate reward matrices
for action NA.
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tics for the 20 sample stocks we use, ranging from the lowest price stock of Santos (STO), with a

price of approximately at 3.50 over the sample period to CSL Ltd.(CSL) with an average price of

129.86. The sample stocks also cover a wide range of average bid ask spreads, from 1.00 ticks to

2.59 ticks.

[Insert Table 1]

The ITCH data contains full order book data with nanosecond time stamping and allows us

to fully reconstruct the complete order book at all prices levels, including all individual resting

limit orders and their queue position. We prepare the data for our analysis as follows. First, we

reconstruct the limit order book so that we can replay the market over the course of a trading day.

Second, for each trading day, we create 210,000 consecutive intervals of length 100ms, with the

first interval starting at the beginning of continuous trading at 10:10 and the last interval ending

at 16:00, when continuous trading ceases.

At the beginning of each interval, we assume there are a series of hypothetical limit orders

located at various price levels and positions in the queue. Specifically, for consistency with our RL

model, we assume hypothetical bids, for one share, are located at the prevailing best bid, one tick

behind the best bid and two ticks behind the best bid. Moreover, at each of these price levels we

assume there is a hypothetical order at the top of the queue, three quarters, half way, and one

quarter towards the top of the queue and one at the very back of the queue.8

Next, using the granularity of the data, we track these hypothetical limit orders over the next

100ms and determine if any of them would have executed.9 If the hypothetical limit order did not

execute during the 100ms interval we track the order’s progression by knowing which real orders

executed ahead of the hypothetical order and which real orders were canceled and submitted over

the interval, thereby allowing us to identify the location of the hypothetical order in the order book.

8We assume each order is only one share to ensure the order does not have an economically meaningful impact.
Moreover, the price and queue location for the hypothetical orders is chosen to ensure our observations span the state
space defined by our RL framework.

9We assume a hypothetical order would have executed if a real order located in the queue behind the hypothetical
limit order executes during the 100ms interval, or, if a trade occurs during the interval, at a price worse than the
hypothetical limit orders price.

17



At the end of each interval, for each hypothetical order, we record information on the state

space of the order at the beginning and at the end of the interval. Specifically, at the start of the

interval, we record the volatility, initial queue position and the total volume available at the first

three best bid prices and the best ask price at the beginning of the interval.10 At the end of the

interval, we record whether the order executes or not. If the order does not execute, we report

the order’s new queue position. Further, regardless of whether the order executes, we record the

volatility, total volume available at the first three best bid prices and the best ask price measured

at the end of the interval.

With the extracted information, we know each order’s initial starting state and its state at the

end of the interval, thereby enabling us to estimate the required transition matrix and immediate

reward matrix using the process outlined in Section 2.

4 Results

In this section, we estimate our model using four public state variables based on the limit order

book queue sizes (qB0 , qB1 , qB2 and qA0), each with five possible values (except qB2 , which only has

three states for tractability reasons). We also include the public volatility state which can take

on three possible values. We also have two private state variables based on the trader’s resting

limit order, L and Q, which have 3 and 5 possibles values, respectively. This state space results

in 16,875 different states when the trader has no inventory and is executing a limit order, 1,125

unique market states when the trader’s order has executed and they have an inventory position,

and 1 absorbing cancel state. Collectively, this means we have m = 16, 875, n = 1, 125 and o = 1,

resulting in 18,001 unique states.11 In the following subsections, we investigate the effect of each

variable on the expected profit of a limit order.

10We measure volatility as the highest traded price minus lowest traded price over the last 100 trades.
11For further clarity, we demonstrate the full estimation process via a detailed illustrative example in Appendix C.
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4.1 Price levels

The relation between a resting limit order’s price and expected profit is not immediately clear due

to two opposing forces; The further a limit order is from the best bid or offer, the more favorable the

execution price. However, this price improvement comes at the cost of lower execution probability

(see Handa and Schwartz (1996)).

Figure 3 presents a boxplot of expected profit for all markets states at each of the three price

levels defined in our state space (best bid, one tick behind and two ticks behind the best bid).

In Figure 3, we observe that the expected profit of a limit order is positive, on average. This

result is consistent with the empirical findings of Handa and Schwartz (1996), who report that a

randomly submitted limit order is profitable and supports the hypothesis that liquidity providers

who accommodate purchases (sales) should be compensated with a higher (lower) price than the

fundamental value (see Scholes (1972)).

[Insert Figure 3]

Table 2 reports the summary statistics for our expected profit estimates. The first row reports

summary statistics for all market states, whereas rows 2 to 4 report summary statistics for limit

orders conditional on their price level. Consistent with Figure 3, when the order is resting at the

best bid, its mean expected profit is highest at 0.319 ticks. When an optimally managed limit order

moves away from the best bid, its expected profit drops to 0.202 ticks when it is one tick behind the

best bid, and drops further to 0.071 ticks, when it is two ticks behind the best best bid. Similarly,

the variance in a limit order’s conditional expected profit decreases as the order moves away from

the best price. The expected profit of an order located at the best bid has a standard deviation of

0.213 ticks, but this value drops to only 0.066 ticks when the order is two behind the best bid.

[Insert Table 2]

The observation that the mean expected profit and variance of expected profit decreases as

the order moves further away from the best bid or offer may provide an explanation for why the
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majority of order cancellations occur at the best bid or ask (see Fong and Liu (2010)). Intuitively,

a trader has no incentive to cancel a limit order resting far from the best price. This order should

have a small positive expected profit as it has little execution risk and may gain favorable queue

priority in the future. If the market moves towards the resting limit order, the probability of

execution increases and the expected profit of the order could turn negative, and at this point, the

trader should evaluate the option to cancel their order.

4.2 Queue Position

In this section, we investigate the effect of a limit order’s queue position on the order’s expected

profit. Some argue that there is an advantage to being at the top of the queue, due to the time

priority rule (see Yueshen (2014), Li et al. (2020) and Yao and Ye (2018)). In contrast, some

literature suggests that small incoming market orders are more informed (see Brogaard et al.

(2014)). Thus, orders at the top on the queue will execute against these small informed orders,

whereas orders further back in the queue can only execute against larger less informed orders. To

determine the effect of queue position on the expected profit of a limit order, we estimate the

following regression:

Qs = β1QueuePoss + State Fixed Effects + εs, (8)

where Qs is the expected profit of a limit order in state s and QueuePoss is the order’s queue

position (0 being the top and 1 being the back) in state s. To isolate just the effect of queue

position, we use fixed effects for all other variables that define our state space

Table 3 presents the mean coefficient across all 20 sample stocks for orders resting at the

best bid, one tick behind the best bid and two ticks behind the best bid in columns 1,2 and 3,

respectively. Table 3 also reports the number of stocks with a statistically positive or negative

coefficient. Our results provide strong evidence that queue priority is advantageous for a limit

order trader. The coefficient for queue position is negative and significant across all 20 sample

stocks and all price levels, suggesting that the further back a limit order’s position in the queue,
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the lower the limit order’s expected profit. The magnitude of the coefficients suggest that queue

position has an economically meaningful effect on the expected profit of a limit order. For example,

an orders expected profit on the best bid would drop by 0.12 ticks if it went from the top of the

queue (QueuePoss = 0) to the back of the queue (QueuePoss = 1), which consists of almost half

the average value of a limit order resting on the best bid (0.319 ticks).

We also observe that the magnitude of the mean coefficient decreases as the order moves to

price levels further from the best bid. Specifically, for orders at the best bid, the mean coefficient

is -0.12, whereas for orders 1 level behind the best bid, the mean coefficient is -0.05, with the mean

coefficient even more attenuated at -0.01 for orders two levels behind the best bid. This result

suggests that queue priority becomes more important as the order moves closer to the best price,

where execution is most likely.

[Insert Table 3]

Our results highlight the advantages of having orders positioned at the front of the queue,

which is consistent with Yueshen (2014), Li et al. (2020) and Yao and Ye (2018). Similarly, our

results provide support for Lo et al. (2002), who postulate that the simulated profits generated

from placing a network of buys and sell limit orders reported in Handa and Schwartz (1996) may

be over-inflated due to an assumption that the network of orders are placed at the top of the queue,

thereby not fully considering the importance of queue priority.

4.3 Queue sizes

Existing theoretical literature suggests that queue sizes affect the value of a limit order (see Parlour

(1998), Goettler et al. (2005), Goettler et al. (2009)). However, there are few empirical tests. In

this section, we empirically investigate how queue size affects the expected profit of a limit order.

To investigate the relation between queue sizes and expected profit, we estimate the following

regression for orders at different price levels:12

12There is no existing theory suggesting that price levels have a linear affect on limit order value. Thus, we estimate
a regression for all orders at each price level individually.
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Qs = β1q
B0
s + β2q

B1
s + β3q

B2
s + β4q

A0
s + State Fixed Effects + ε, (9)

where Qs is the expected profit of a limit order in state s, qBi
s is the size of the bid queue at

level i in state s and qA0
s is the size of the queue on the ask. To isolate just the effect of queue

sizes, we use fixed effects for all other variables that define our state space.

Table 4 presents the results for orders resting at the three different prices levels defined in our

state space (Best bid, One tick behind best bid, Two ticks behind best bid). For each variable,

we report the mean coefficient across all 20 sample stocks. To ensure the mean coefficients are

not driven by one stock, we also report the number of stocks with statistically positive or negative

coefficients.

Overall, our results suggest that the larger the queue size behind a resting limit order, the

higher the expected profitability of the order. Conversely, the larger the queue size in front of a

resting limit order, the lower the expected profitability of the order. Observing the results for orders

resting at the best bid, we find that the mean coefficients for qB0 , qB1 , qB2 are all positive at 0.06,

0.05 and 0.04 respectively, suggesting that an increase in queue lengths at or behind the price level

the order is resting at increases the limit order’s expected profit. This relation weakens at price

levels further away from the best bid. Not only do the average coefficients drop monotonically from

0.06 to 0.04 as we transition from qB0 to qB2 , but we also see the number of stocks with positive

and significant coefficients drop from 19 to 18 to 14 as we transition from qB0 to qB1 to qB2 .

In contrast to our findings for orders resting at the best bid, for orders behind the best bid, an

increase in queue sizes at price levels ahead of the resting limit order decreases the order’s expected

profit. For example, the coefficient for queue sizes at the best bid (qB0) is negative and significant

for all 20 sample stocks for orders resting one level behind the best bid. Similarly, the coefficients

for queue lengths at the best bid (qB0) and one level behind the best bid (qB0) are negative and

significant for all 20 sample stocks for orders resting two levels behind the best bid.
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[Insert Table 4]

Our findings manifest in two ways. First, a limit order with more volume in front of the order

faces higher adverse selection risk. This is because the volume in front of the order must first execute

before the limit order can execute. For example, a limit order behind a large block of volume can

only immediately execute when a larger incoming market order enters to first remove the large

block of volume. These large market orders cause the largest adverse selection (see Hasbrouck

(1991)). In contrast, an order with no volume in front of it can execute against the next incoming

market order, regardless of how small it is.

Second, a limit order with more volume in front of the order has a lower execution probability.

This is because the volume in front of the order creates order book pressure that can drive the

price away from the order. Cao et al. (2009) demonstrate that if the volume on the bid side of the

order book is significantly larger (smaller) than the volume available on the ask side of the order

book, then the midpoint price is more likely to increase (decrease) in the near future. Thus, if a

resting limit order has a large volume ahead of it, that limit order is more likely to be on the thick

side of the book, and consequently the price is likely to move away from the order, resulting in no

execution.

The relation between a limit order’s expected profit and the amount of volume on the opposite

side of the book also depends on the order’s price level. In Table 4, the coefficient for the volume on

the opposite side of the book (qA0) is negative and significant for all sample stocks when the order

is on the best bid. However, the sign becomes positive and significant for orders behind the best

bid. This finding suggests an increase in volume on the opposite side of the order book decreases

(increases) the expected profit of the limit order if it is at (behind) the best price.

This difference in effect is due to a trade off between adverse selection and execution proba-

bility. Cao et al. (2009) document that a large volume on the opposite side of the book creates

book pressure that causes shifts in the midpoint towards the limit order, which increases both the

likelihood of adverse selection and the probability of execution. When a resting limit order is on

the best bid, an increase in ask volume increases the likelihood of a downtick, thereby increasing
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the expected loses from adverse selection more than the expected profits from increased execution

probability. In contrast, when the order is behind the best bid, expected profits from increased

execution probability outweighs the expected loses from adverse selection. Specifically, the magni-

tude of the midpoint movements due to order book pressure is typically not more than two ticks.

Therefore, when a limit order is behind the best bid and there is downward book pressure, the

order’s execution probability is high but adverse selection risk is low, as the midpoint is unlikely to

move lower than the order. Moreover, if the downward order book pressure persists after the first

downtick, the order is canceled, before it is adversely selected.

Taken together our results provide strong support for Parlour (1998); we find that the larger

the queue size behind a resting limit order, the higher the expected profitability of the order, and

the larger the queue size in front of a resting limit order, the lower the expected profitability of

the order. We also document that the queue size on the opposite side of the book has mixed

effects due to a trade off between adverse selection and execution probability. As the queue size on

the other side of the book increases, the risk of adverse selection and execution probability both

increase. For orders resting at the best price, the loses from adverse selection outweigh the gains

from higher execution probability. In contrast, for orders resting behind the best price, the gains

from higher execution probability outweigh the loses from adverse selection. Overall, our findings

provide support for the predictions of Parlour (1998), Goettler et al. (2005) and Goettler et al.

(2009) that strategic traders should consider queue sizes at multiple price levels and demonstrate

pervasive features that exist for orders at different price levels.

4.4 Volatility

In this section, we investigate the effect of volatility on the expected profit of a limit order. While

existing theoretical models shed some light on the relation between volatility and the expected

profit of a limit order, there is no clear consensus due to two opposing forces identified in the

literature.

The first force suggests that an increase in volatility would decrease the expected profit of a

limit order. Specifically, Foucault (1999) predicts that when volatility increases, the probability
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of a limit order being picked off and the losses that ensue are larger, which would decrease the

expected profit of a limit order. The second force is a reaction to the first force; to compensate for

the higher likelihood of adverse selection and corresponding reduction in expected profit of a limit

order, liquidity providers widen the bid ask spread when volatility increases (see Copeland and Galai

(1983) and Foucault (1999)). If the prices that limit orders could be submitted to was continuous,

then liquidity providers would widen the spread to exactly offset the expected losses due to the

increase in picking off risk. However, in reality price levels are discrete and liquidity providers may

not always be able to set the spread to perfectly offset the effect of increased volatility. Because

of this price discretization, volatility could have a positive or negative effect on the expected profit

of a limit order. To determine the effects of volatility on the expected profit of a limit order, we

perform the following regression:

Qs = β1V olatilitys + State Fixed Effects + εs, (10)

where Qs is the expected profit of a limit order in state s and V olatilitys is the volatility in

state s. To isolate just the effect of volatility, we use fixed effects for all other variables that define

our state space. Given that we are primarily interested in the effect of volatility on orders at the

best bid or offer and this effect may vary across price levels, we estimate (10) on the subset of limit

orders at the first price level of our defined state space.

Table 5, Column 1 reports an average coefficient across all sample stocks of 0.38. While this

average coefficient suggests that volatility increases the expected profit of a limit order, the results

are less clear upon closer inspection of the individual coefficients for each stock. Specifically, 9 out

of our 20 sample stocks have a positive coefficient, while 11 out of 20 have a negative coefficient.

Thus, the effect of volatility on the expected profit of a limit order at the best bid is not consistent

across all stocks.

[Insert Table 5]
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Given the opposing forces volatility may have on the expected profit of a limit order identified

in Foucault (1999), we hypothesize that the effect differs depending on whether the stock is tick

constrained. For stocks that are typically tick constrained, we propose that an increase in volatility

has a negative effect on the expected profit of a limit order, as liquidity providers need not widen

their spreads to compensate for the increase in picking off risk. In contrast, for stocks that are less

tick constrained, we predict that an increase in volatility increases the expected profit of a limit

order. For these stocks, liquidity providers are willing to widen their spreads as compensation for

the increase in picking off risk during high volatility periods. Because of the discrete price levels,

liquidity providers post orders at prices that over compensate rather the under compensate for the

increased losses due to picking off risk. Thus, an increase in volatility increases the expected profit

of a limit order.

To test if volatility has different effects on the expected profit of a limit order for tick con-

strained and unconstrained stocks, we analyze two stock sub samples. Table 5, column 2 reports

results for the quartile of most tick constrained stocks, while column 3 reports results for the quar-

tile of stocks that are least tick constrained. Consistent with our hypothesis, we find that volatility

decreases the expected profit of a limit order for stocks that are tick constrained. In contrast, for

stocks that are less tick constrained we find that volatility increases the expected profit of a limit

order.

Taken together, our results support Foucault (1999), who predicts that volatility can affect the

expected profit of a limit order via two channels. First, Foucault (1999) suggests that an increase in

volatility increases adverse selection (i.e., decreases the expected profit of a limit order). Due to price

discretization, this channel is most prevalent in tick constrained stocks; in this subsample, we find

an increase in volatility decreases the expected profit of a limit order. The second channel identified

in Foucault (1999) is in response to the first channel: Liquidity providers demand compensation

for the increased risk of adverse selection by widening bid ask spreads (i.e., an increase in volatility

increases the expected profit of a limit order). Again, due to price discretization, this channel is

most prevalent in less tick constrained stocks. For these less constrained stocks, an increase in

volatility increases the expected profit of a limit order.
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4.5 Variable importance

The results so far show that price levels, queue sizes, queue position and volatility all affect the

expected profit of a limit order. In this section, we determine the importance of these variables

using a technique found in the machine learning literature know as Mean Decreased Accuracy

(MDA), which has more recently been used in finance by Easley et al. (2019). In our setting, MDA

measures the decrease in accuracy of the forecast expected profit of a limit order if one of the

variables defining our states is measured with error.

Estimating the MDA requires two parameters. The first parameter is the true expected profit

of a resting limit order, Q(s,NA), which we estimate via the RL model. The second parameter is the

randomized expected profit of a resting limit order, Q(skR, NA) which we estimate by randomizing

one of the 7 variables that define the state space while holding all other variables constant. The

randomized expected profit, Q(skR, NA) , is the expected profit associated with the randomly chosen

state, skR, that is created by randomizing variable k. Using these two parameters, we can estimate

the MDA for variable k as follows:

MDAk =
S∑
s=1

(
|(Q(s,NA)−Q(skR, NA))|

Q(s,NA)

)
/S. (11)

The MDA measures the error in expected profit estimates that is caused when one variable is

measured with error. Thus, the larger a variable’s MDA, the more important that variable is for

determining the expected profit of a limit order. For each variable, k, we estimate the MDA and

repeat this process 100 times.

Table 6 reports the mean and standard deviation of the MDA for each variable. We find that

the most important variable that drives the expected profitability of a limit order is the price level

at which the limit order rests. Our results suggest that the next most important variables are

the queue sizes on the same side of the order book that the limit order rests. We find that the

importance for queue size decreases as the queues move further away from the best bid. More

specifically, we find that the size of the queue at the best bid (MDA = 1.22) is the most important,
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followed by the queue size one tick behind the best bid (MDA = 1.17), and the queue size 2 ticks

behind the best bid (MDA = 0.68). After queue sizes on the same side of the book as the order, we

find the next most important variable is queue size on the opposite side of the order book (MDA

= 0.68), then volatility (MDA = 0.56) and last queue position (MDA = 0.2).

[Insert Table 6]

4.6 The option to cancel

Despite the prevalence of order cancellations, the option to cancel has received little attention in the

literature. Accordingly, in this section, we contribute to the literature by investigating the value of

the option to cancel and the market conditions when this option is most valuable. We re-estimate

a constrained version of our RL model, which restricts the trader to only one action, NA, which

implies the trader is unable to cancel their order. Thus, the estimated Q values from this restricted

model is the expected profit of a limit order that is not optimally managed. To determine the value

of the option to cancel, we compute the difference between the Q value of the unrestricted model,

which contains the option to cancel, and the Q value of the restricted model, which has no option

to cancel.

Table 7 reports the summary statistics on the value of the option to cancel. The first row

reports summary statistics for limit orders in any market state, while rows 2 to 4 report summary

statistics for limit orders conditional on their price level. The value of the option to cancel a limit

order on the best bid is 0.049 ticks, on average. Thus, on average, the option to cancel a limit

order from the best level is worth approximately 15% of the total value of an optimally managed

limit order.13 This finding suggests the endogenous option to cancel a limit order contributes an

economically meaningful amount towards the total expected profit of an optimally managed limit

order.

[Insert Table 7]

13Table 2 reports a mean value of an optimally managed limit order at the best bid of 0.31 ticks.
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Table 7 also suggests the value of the option to cancel is heavily skewed towards certain market

conditions. Specifically, for orders resting at any price level, we observe the means are substantially

higher than the corresponding medians, indicative of a large right skew in the data.

Theoretical considerations suggest that the option to cancel is most valuable when the limit

order is most likely to be adversely selected. However, it is difficult for a trader to know when

adverse selection risk is high ex-ante. Thus, to proxy for an ex-ante measure of adverse selection

risk, we draw on Cao et al. (2009), who show that order book pressure can be used to predict short

term price movements. Thus, we use order book pressure as a proxy for ex-ante adverse selection

and estimate the following regression for the subset of limit orders at the front of the queue at each

price level:

value of option to cancel = β0 + β1q
B0 + β2q

B1 + β3q
B2 + β4q

B3 + ε. (12)

If the value of the option to cancel increases when adverse selection increases, we expect an

increase in volume on the same side of the order to decrease the value of the option to cancel.

Similarly, we expect an increase in volume on the opposite side of the order to increase the value

of the option to cancel. Table 8 confirms this hypothesis and demonstrates the option to cancel

is most valuable when book pressure is going against the order (i.e., adverse selection is high).

Specifically, for all regressions, Table 8 reports a negative relation between the queue size at any

price level on the bid side and the value of the option to cancel. Similarly, for all regressions, the

value of the option to cancel has a positive relation with the queue size on the opposing ask. In

other words, the more volume on the same side as the limit order, the lower the value of the option

to cancel. Whereas, the more volume on the opposite side of the limit order, the higher the value

of the option to cancel.

[Insert Table 8]
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5 Conclusion

While limit order markets have become the dominant trading mechanism, we know little about

the dynamics of the limit order book and order management strategies due to the complexity of

the problem (see Parlour and Seppi (2008)). Understanding limit order management is relevant

for academics, practitioners and those who regulate our financial markets. For example, to set

a maximum order-to-trade ratio or a minimum resting time, one must first understand how to

optimally manage a limit order to determine what are reasonable values.

We propose a recursive sequential framework for limit order management within a machine

learning model. One innovation is modeling the endogenous choice to cancel a limit order. In

our framework, the option to cancel a limit order is exercised if the expected profit of the limit

order becomes negative. The expected profit of a limit order is a function of the current market

conditions and expectations about future market conditions and their likelihoods of occurring.

Our ML approach empirically confirms the theoretical predictions on the variables, or market

conditions, that are important for a limit order trader. Specifically, we show that queue size, order

priority, volatility and order price have an economically meaningful effect on the expected profit of

a limit order. Moreover, using Mean Decreased Accuracy (MDA) to rank the relative importance

of these variables, we find that price level is the most importance variable, followed by queue sizes,

volatility and queue priority. Further, we show that the endogenous option to cancel is important:

On average, this option to cancel represents 15% of a limit order’s total expected profit. During

periods of high adverse selection risk, this option becomes even more valuable.
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6 Appendix

A Transition Matrix

Transition matrix for action NA

Figure A.1 illustrates the section of the transition matrix, T , when the action is NA (i.e.,

leave the limit order), which is a S × S matrix that requires empirical estimation. The states

s1(0), . . . , sn(0) reflect the n possible states when the trader has no inventory and is working an

order. The states s1(1), . . . , sm(1) reflect the m possible states the market can exist, when the

trader has a long position and is no longer working a limit order. sC(0) reflects the absorbing state

once the trader cancels their order.

Figure A.1. Transtion matrix for NA

Figure A.1 depicts the S × S transition matrix for the experience tuples in which the action is to leave the resting
limit order, or do nothing, NA. States si(0) represent states when the trader is working their limit order, whereas
states sj(1) represent states when the trader’s order has been executed. State sC(0) represents the absorbing order
cancellation state.
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...
. . .

...
Unexecuted Executed

sn−1(0) pn−1,1 pn−1,n+1

sn(0) pn,1 . . . pn,n pn,n+1 pn,n+m pn,n+m+1

s1(1) 0 . . . 0 0 pn+1,n+1 . . . pn+1,n+m 0
...

... Prohibited 0
... Long

...
...

sm(1) 0 0 0 0 pn+m,n+1 . . . pn+m,n+m 0

sC(0) 0 . . . 0 0 0 . . . 0 1



The top left quadrant of the transition matrix, labeled “Unexecuted”, contains the transition

probabilities for a limit order that does not execute during the transition from one state to the

next. These transition probabilities capture the evolution of market conditions and the limit order’s

movement. For example, the transition probabilities capture the likelihood of the limit order’s

progression up the queue of the limit order book, or how other market participants are likely to

react to current market conditions. We estimate these values empirically via (5).

31



The block of the transition matrix titled “Executed” contains the probability of limit order

execution during the state transition. In our setup, once an order is executed, the trader has no

further limit orders. As a result, the trader must transition to one of m positive inventory states,

sj(1), where j captures different possible states based on the public information reflected in the

order book variables. Again, we estimate these values empirically via (5).

Following execution, the trader must remain in one of the m positive inventory states and

is unable to submit another order. To ensure the trader does not have another limit order once

they are long, and remains in a positive inventory state, we specify the block titled “Prohibited”

in Figure A.1 to contain only zeros. The block titled “Long” captures the transition probabilities

for a trader who is long in one market state and transitions to another market state where they

continue to be long, which requires empirical estimation via (5).

The final column reports the probability the trader transitions to the absorbing state by

canceling their order. The absorbing nature of the state is represented by the transition probability

of 1, in the bottom right of Figure A.1. If the trader is currently in the absorbing cancel state,

then the probability they are in the absorbing cancel state in the subsequent period is 1. Given the

action for this section of the matrix is NA, we may expect the probability to enter the absorbing

cancel state to be zero for all market states when the trader has a resting limit order. However,

we assume that should the resting limit order transition into an undefined state (more than three

ticks from the best bid), the trader’s action NA is overruled and the order is canceled. Thus, there

can be a non zero probability the order is canceled, which we empirically estimate.

Transition matrix for action C

Figure A.2 illustrates the S × S section of the transition matrix, T , when the action is to

cancel the resting limit order (C). Unlike the section of the transition matrix when the action

is NA, this section of the transition matrix is deterministic and does not require any empirical

estimation of the transition probabilities. If the trader cancels their limit order, they transition

to the absorbing cancel state with certainty. Therefore, the probability of entering the absorbing

cancel state, which is captured in the final column of Figure A.2, is 1 for all current states where

the trader has a resting limit order. Further, if the order is canceled, the market cannot transition
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to any state where the limit order still exists or executes. Thus, the “Unexecuted” and “Executed”

blocks contain only zeros.

To ensure the trader only has one resting limit order, we restrict any state where the trader

has an inventory position, or has already canceled their order, to not having another resting order.

Because of this restriction, taking the action to cancel an order when in a state where the trader

has a long inventory position, or has canceled their order, is prohibited and has a zero probability

of occurring.

Figure A.2. Transition matrix for C

Figure A.2 depicts the S × S transition matrix for the experience tuples in which the action is to cancel the resting
limit order, C. States si(0) represent states when the trader is working their limit order, whereas states sj(1) represent
states when the trader’s order has been executed. State sC(0) represents the absorbing order cancellation state.

Future State

C
u
rr

en
t

st
a
te

w
it

h

a
ct

io
n
C



s1(0) s2(0) ... sn(0) s1(1) ... sm(1) sC(0)

s1(0) 0 . . . 0 0 . . . 0 1

s2(0)

...
. . .

...
. . . 1

Unexecuted Executed 1
sn−1(0) 1
sn(0) 0 . . . 0 0 0 1

s1(1) 0 . . . 0 0 0 . . . 0 0
...

... Prohibited 0 Prohibited 0
sm(1) 0 0 0 0 0 . . . 0 0



Full transition matrix

In Figures A.1 and A.2 we present two S × S sections of the full 2S × S transition matrix,

T . Specifically, Figure A.1 (A.2) is a transition matrix for all experience tuples when the action

is NA (C). To generate the full transition matrix, T , we vertically stack the 2 subsections, each

with dimension S × S, resulting in the full transition matrix of dimension 2S × S. For notational

convenience, we refer to T (〈s, a〉, s′) as the probability a limit order transitions to state s′ given the

trader makes action a while the limit order is in state s.
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B Immediate Reward

Figure B.3 contains the matrix of immediate rewards for all experience tuples that occur when the

action is NA. If the trader’s limit order is unexecuted during the transition, then the immediate

reward is zero, which is shown in the upper left quadrant. In contrast, if the trader’s limit order

executes, then the immediate reward is the profit generated. We empirically compute the immediate

profit via (6), which is the difference between the execution price and the midpoint in the future

state s′ and is shown in the block of Figure B.3 titled “Executed”. The block of Figure B.3 titled

“Long” contains the immediate profits that occur when the trader is long and the market transitions

from one state to the next. We empirically estimate these immediate profits via (6), and they reflect

any profit generated via a change in midpoint over a state transition.

Figure B.3. Immediate reward matrix

Figure B.3 depicts the S × S immediate reward matrix for transitioning from one state to the next. States si(0)
represent states when the trader is working their limit order, whereas states sj(1) represent states when the trader’s
order has been executed. State sC(0) represents the absorbing order cancellation state.
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s1(0) s2(0) ... sn(0) s1(1) ... sm(1) sC(0)

s1(0) 0 . . . 0 r1,n+1 . . . r1,n+m 0

s2(0)

...
. . .

...
. . . 0

Unexecuted Executed 0
sn−1(0) 0 rn−1,n+1 0
sn(0) 0 . . . 0 rn,n+1 rn,n+m 0

s1(1) 0 . . . 0 0 rn+1,n+1 . . . rn+1,n+m 0
...

... Prohibited 0
... Long

... 0
sm(1) 0 0 0 0 rn+m,n+1 . . . rn+m,n+m 0

sC(0) 0 0 0 0 0 . . . 0 0



When the action is NA, the limit order can either execute or there can be an existing long

position. Either of these scenarios can result in a non-zero immediate reward. In contrast, when the

trader cancels their order, the immediate reward must be zero as they have no limit orders executed

and no inventory position. Therefore the S × S immediate reward matrix, when the action is C,

contains only zeros.
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C Illustrative example

In this appendix, we provide a simple example to illustrate the empirical estimation process of our

framework via an iterative learning rule known as Q-learning defined as:

Qt+1(s, a) = Qt(s, a) + α
(
E[R(s, a)] + γ

∑
s′∈S

T (〈s, a〉, s′) max
a

Qt(s
′, a)−Qt(s, a)

)
, (13)

where α is the learning rate and t is the iteration number. The Q-learning rule is a value iteration

update. Watkins and Dayan (1992) show that the Q values will converge to Q∗ with probability 1

if all actions are repeatedly sampled in all states and the action-values are represented discretely.

To simplify this illustrative example, we first define a simplified state-action space. We then

illustrate how to empirically estimate our simplified transition probability matrix and immediate

reward matrix. We conclude with a demonstration of the Q-learning rule.

C.1 State action space

Similar to the model we formulated in Section 2, in this illustrative example our trader has two

available actions. The first available action is to cancel the existing limit order (C). The second

available action is to do nothing (NA), which leaves the existing limit order in the queue. However,

to simplify our illustrative example, we reduce the state space and only consider the queue size

at the best bid (qB0) and best ask (qA0) and ignore the queue sizes at levels behind the best bid

(qB1 ,qB2). Moreover, we discretize queue size into only two categories, which we define as large

and small. To further reduce dimensionality, we reduce the private state variable, queue position

(Q) to only two possible states, front and back, representing whether the order is in the front half

or back half of the queue, respectively. These reductions result in a state space of 8 possible states

when the trader has no inventory and is executing a limit order, 4 possible market states when the

trader has an inventory position and is no longer executing an order, and 1 absorbing state which

occurs when the trader cancels their order. Collectively, our setup has a total of 13 possible unique
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market states. More formally, m = 8, n = 4 o = 1 and S = 13 and we define each state as

sjk(I) = [I, L,Q, qB0 , qA0 ] =



sf1(0) = [0, 0, front, small, small]

sf2(0) = [0, 0, front, small, large]

sf3(0) = [0, 0, front, large, small]

sf4(0) = [0, 0, front, large, large]

sb1(0) = [0, 0, back, small, small]

sb2(0) = [0, 0, back, small, large]

sb3(0) = [0, 0, back, large, small]

sb4(0) = [0, 0, back, large, large]

sX1 (1) = [1, X,X, small, small]

sX2 (1) = [1, X,X, small, large]

sX3 (1) = [1, X,X, large, small]

sX4 (1) = [1, X,X, large, large]

sC(0) = [0, X,X,−,−]

(14)

where k is an index of the public market state, which is reflected by qB0 and qA0 . j takes on

the value of f (b) if the limit order is at the front (back) half of the queue, a value of X if the

trader has an inventory position and no limit order, or a value of C if the trader has cancelled their

order. The X term captures our restriction that no additional limit orders can be submitted once

the trader has a positive inventory position or cancels their order. For each of the 8 states, where

the trader is working a limit order, the trader has the choice of making the action to do nothing,

NA, or cancel their existing order, C. For the states where the trader is long or has cancelled their

order, they can only make action NA. With the state action space defined, the input variables for

(13) are the transition matrix and immediate reward matrix, which we empirically estimate.
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C.2 Transition probabilities

T (〈s, a〉, s′) represents the probability that the limit order transitions the market to state s′ under

action a while in state s. For example, T (〈sf1(0), NA〉, sf2(0)) is the probability that a limit order at

the front of the queue which exists when the best bid and best ask both have short queue lengths

transitions to a subsequent period where the order is still at the front half of a queue and it remains

unexecuted, but market conditions have changed such that the bid volume is small and the ask

volume is now large.

We compute these transition probabilities empirically using the MLE estimate defined by (5).

For example, to estimate T (〈sf1(0), NA〉, sf2(0)), we observe the subsample of observations that

capture state sf1(0) (i.e., the observations that have small queue sizes on both the bid and the ask

and the limit order is at the front half of the bid). Next, we compute the proportion of observations

that transition to the subsequent state sf2(0), which is reflected by the limit order still remaining

in the top half of the book, but under new market conditions (i.e., the bid queue size is small and

the ask queue size is large). Table C.4, reports empirical estimates of the transition probabilities

using data defined in Section 3.
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Figure C.4. Transition matrix

Figure C.4 depicts the SA × S transition matrix for the experience tuple in which the action is to leave the resting
limit order, NA, or cancel the order, C. States si(0) represent states when the trader is working their limit order,
whereas states sj(1) represent states when the trader’s order has been executed. State sC(0) represents the absorbing
order cancellation state.
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

s
f
1 (0) s

f
2 (0) s

f
3 (0) s

f
4 (0) sb1(0) sb2(0) sb3(0) sb4(0) sX1 (1) sX2 (1) sX3 (1) sX4 (1) sC(0)

1 sf1 (0) 0.86 0.02 0.02 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.01

2 sf2 (0) 0.03 0.82 0.00 0.02 0.00 0.02 0.00 0.00 0.01 0.07 0.01 0.01 0.01

3 sf3 (0) 0.01 0.00 0.89 0.03 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.00 0.02

4 sf4 (0) 0.00 0.01 0.02 0.90 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.03 0.02

5 sb1(0) 0.06 0.00 0.01 0.00 0.87 0.03 0.02 0.00 0.01 0.00 0.01 0.00 0.01

6 sb2(0) 0.00 0.07 0.00 0.01 0.03 0.84 0.00 0.02 0.01 0.01 0.01 0.01 0.01

7 sb3(0) 0.00 0.00 0.02 0.00 0.03 0.01 0.90 0.03 0.00 0.00 0.00 0.00 0.02

8 sb4(0) 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.92 0.00 0.00 0.00 0.00 0.02

9 sX1 (1) 0.94 0.03 0.03 0.00 0
10 sX2 (1) 0.04 0.91 0.01 0.04 0
11 sX3 (1) 0 0.03 0.01 0.92 0.04 0
12 sX4 (1) 0.01 0.03 0.03 0.94 0

13 sC(0) 0 0 1

14 sf1 (0) 1

15 sf2 (0) 1

16 sf3 (0) 1

17 sf4 (0) 0 0 1

18 sb1(0) 1

19 sb2(0) 1

20 sb3(0) 1

21 sb4(0) 1

22 sX1 (1) 0
23 sX2 (1) 0
24 sX3 (1) 0 0 0
25 sX4 (1) 0

26 sC(0) 0 0 0



Figure C.4 has a distinct structure. The upper left block of the transition matrix represents

states when the trader has no inventory and completes the action of do nothing, NA. This area

has a strong diagonal, which reflects that an uncanceled limit order is most likely to remain in the

same state in the subsequent 100ms period. For example, observing the transition probabilities for

the state sf1(0), which reflects a resting limit order at the front half of the queue when the queue

sizes on the best bid and best ask are small, there is an 86% chance the subsequent state will be

the same. However, there is also a 2% chance the subsequent state is either sf2(0) or sf3(0), which

implies either 1) the best ask has grown to become large and the market has transitioned to sf2(0),
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or 2) the best bid has grown and the market has transitioned to sf3(0).

The section of the transition matrix for transitions from state si(0) to state sj(1) with action

NA, reports the probabilities that a resting limit order executes during the transition to the subse-

quent state. We observe that resting limit orders at the front of the queue (rows 1-4) have a higher

probability of execution than resting limit orders at the back of the queue (rows 5-6). Further, the

probability of execution for sf2(0) is 0.1 (0.01 + 0.07 + 0.01 + 0.01), which is higher than the prob-

ability of execution for any of the other states with a resting limit order. State sf2(0) occurs when

the trader has a resting limit order at the front half of the best bid and the bid queue size is small,

while the ask queue size is large. Cao et al. (2009) demonstrate that when the ask volume is larger

than the bid volume, aggressive sell orders are more likely to occur and prices will decrease in the

near future. Therefore, it is consistent with the literature that the highest probability of execution

occurs for state sf2(0). Moreover, the strong diagonal component of this section of the transition

matrix reflects that when a resting limit order executes during the transition to the subsequent

period, it is most likely that the state of the order book in the subsequent period is in the same

state as the current period.

Rows 9 to 12 of Table C.4 represent the transition probabilities when the trader has an inven-

tory position. The left block of the rows take the value of zero to ensure the trader does not have

additional limit orders once a long inventory position occurs. The middle block captures the prob-

ability the trader transitions to a subsequent market state with their inventory position remaining

unchanged. Given the trader has no resting limit orders, we estimate these transition probabilities

using only the public state variables, which in this example are the size of the best bid and ask

(qB0 and qA0).

As discussed in Appendix A, we do not need to estimate transition probabilities when the

action is C. When the action is C, the transition probability to any state with a resting limit is

0 and the transition probability to the absorbing state is 1. Moreover, if the trader has a long

position, or is already in the absorbing state, they are prohibited to make action C, as they have

no order to cancel. To uphold this constraint, rows 22 to 26 all sum to zero, which ensures there is

a 0 probability that action C occurs when in these states.
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We note that in rows 1-8 of Figure C.5 we report non-zero values for the probability to transition

to the absorbing order cancellation state, sC(0), despite the action being NA. These non-zero values

maintain our assumption that if the market transitions to a state space where the resting limit is not

recognized, the action NA is over ruled by action C. Specifically, in this case, the state space only

contains limit orders at the best bid. Thus, if the best bid increases during the market transition,

so that the existing limit order is no longer at the best bid, the trader will be forced to cancel the

order.

C.3 Immediate rewards

Next, we require the immediate reward for all possible transitions via (6). To empirically estimate

the immediate reward when the trader has a long position, we take the average change in midpoint

for the subset of observations that capture the correct transition from one state to the next. For

example, to estimate R(〈sX1 (1), NA〉, sX1 (1)), we create a subset of observations from our full sample

of data by using observations when the market is in an initial state of sX1 (1) (i.e., the queue size of

the best bid and ask are both small) and the subsequent market state is the same, sX1 (1). For this

subset of observations, we then take the average of (6), which is the average change in midpoint

price.

To estimate the immediate reward for the execution of a limit order, we use a similar approach.

For example, to estimate the immediate reward for R(〈sf1(0), NA〉, sX1 (1)) we create a subset of

observations that only include observations where the trader is in state sf1(0) (i.e., the trader has a

resting limit order at the front of the best bid during market conditions where the size of the best

bid and ask are small) and transitions to the subsequent state sX1 (1) (i.e., the trader has a long

position when the best bid and ask queue sizes are small). For this subset of observations, we use

the average immediate reward, computed via (6), which is the midpoint price in the new state less

the limit order’s execution price.
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Figure C.5. Immediate reward matrix

Figure C.5 depicts the SA × S transition matrix for the experience tuple in which the action is to leave the resting
limit order, NA, or cancel the order, C. States si(0) represent states when the trader is working their limit order,
whereas states sj(1) represent states when the trader’s order has been executed. State sC(0) represents the absorbing
order cancellation state.
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s
f
1 (0) s

f
2 (0) s

f
3 (0) s

f
4 (0) sb1(0) sb2(0) sb3(0) sb4(0) sX1 (1) sX2 (1) sX3 (1) sX4 (1) sC(0)

1 sf1 (0) 0.32 0.25 −0.19 −0.05 0

2 sf2 (0) −0.30 0.47 −0.49 −0.00 0

3 sf3 (0) 0.20 0.16 0.43 0.31 0

4 sf4 (0) 0 −0.40 0.43 −0.36 0.47 0

5 sb1(0) -0.07 −0.02 −0.24 −0.09 0

6 sb2(0) −0.45 0.33 −0.49 −0.04 0

7 sb3(0) −0.18 −0.15 -0.15 −0.14 0

8 sb4(0) −0.50 0.23 −0.49 0.16 0

9 sX1 (1) 0 0.23 −0.20 0.08 0
10 sX2 (1) −0.23 0 −0.84 −0.25 0
11 sX3 (1) 0 0.20 0.84 0 0.24 0
12 sX4 (1) −0.08 0.25 −0.24 0 0

13 sC(0) 0 0 0

14 sf1 (0) 0

15 sf2 (0) 0

16 sf3 (0) 0

17 sf4 (0) 0 0 0

18 sb1(0) 0

19 sb2(0) 0

20 sb3(0) 0

21 sb4(0) 0

22 sX1 (1) 0
23 sX2 (1) 0
24 sX3 (1) 0 0 0
25 sX4 (1) 0

26 sC(0) 0 0 0



Figure C.5 reports the empirically estimated immediate reward for all possible transitions.

Figure C.5 only reports non zero values when the trader transitions to a long position. This

segmentation ensures the trader only receives an immediate reward when a limit order is executed

or a the trader has a long position. Otherwise, the trader receives no immediate reward.

The reported immediate rewards are the potential gains or losses that immediately occur during

the transition from one market state to the next. For example, we report the immediate rewards

for state sf1(0) in row 1. When the limit order in state sf1(0) executes and the trader transitions
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to state sX1 (1), the immediate reward is 0.32, which implies the trader makes an immediate gain of

0.32 ticks, on average.

C.4 Estimation

We initialize our Q values, or long run expected profits forecasts, for each experience tuple to

zero. Using the Q-learning rule defined by (13), we update our Q values for each experience tuple

recursively. For example, we update our estimate for Q(sf1(0), NA) for the first iteration via:

Q1(sf1(0), NA) = E[R(sf1(0), NA)] + γ
∑
s′∈S

T (〈sf1(0), NA〉, s′) max
at+1

Qt(s
′, at+1), (15)

where the first term is the immediate profit for taking action NA which we compute via (7). The

second term is the expected future profit conditional on taking action NA now. We observe the

second term multiplies the probability of arriving in future state s′ with the maximum Q value the

trader can achieve by picking the optimal action at+1 while in state s′. Because we have initialized

all Q values to zero, on the first iteration, the maxat+1 Qt(s
′, at+1) term in (15) will be zero for all

s′ and the trader will be indifferent to all choices of at+1. Thus, the second term of (15) is zero and

we update our estimate for Q(sf1(0), NA) for the first iteration as follows:

Q1(sf1(0), NA) = E[R(sf1(0), NA)] +
∑
s′∈S

T (〈sf1(0), a〉, s′)×R(〈sf1(0), a〉, s′)

= (0.05× 0.32) + (0× 0.25) + (0.01×−0.19) + (0×−0.05) + · · ·+ 0

= 0.0141

Applying the same process, we update the associated Q values for all experience tuples, which

we report in Column 1 of Table C.1. Given the Q values were all initialized to 0, these first iteration

values are the expected immediate profits.

On iteration two, the input values for our learning rule remain the same except for the Q

value estimates, which are updated to the new values estimated in iteration 1. As a consequence,

unlike in iteration 1, the maxat+1 Qt(s
′, at+1) term in (15) will no longer be zero for all s′ and the
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trader will have the option to pick the optimal action at+1 conditional on the future state s′ they

transition to. For example, for the experience tuple 〈sf1(0), NA〉, the trader makes action NA,

which can transition the trader to the future state sf1(0) with probability 0.86. In this future state,

the trader can make action NA or action C. Given the current Q value estimate for taking action

NA while in state sf1(0) is 0.0141, while the current Q value estimate for taking action C while in

state sf1(0) is 0, if the trader transitions to future state sf1(0), it is optimal for the trader to take

future action NA as this action results in a higher Q value.

An alternative scenario when it is not optimal for the trader to make future action NA occurs

when the trader transitions to future state sb1(0), which occurs with probability 0.02. In this state,

the trader’s future optimal action now differs, as it is optimal to take future action C and cancel.

If the trader makes future action C while in future state sb1(0), the associated current Q value,

or long term profit, is zero. Whereas, if the trader makes future action NA, while in future state

sb1(0), the associated current Q value, or long term profit, is -0.0031.

This ability for the trader to select the optimal action when in a future state is the critical

component of a reinforcement learning algorithm, allowing us to model a traders optimal man-

agement over the life-cycle of a limit order. Applying this logic, we update our second iteration

estimate for Q(sf1(0), NA) as follows:
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Q1(sf1(0), NA) = E[R(sf1(0), NA)] + γ
∑
s′∈S

T (〈sf1(0), NA〉, s′) max
at+1

Qt(s
′, at+1)

= E[R(sf1(0), NA)]

+ γT (〈sf1(0), NA〉, sf1(0)) max{Qt(sf1(0), NA), Qt(s
f
1(0), C0)}

+ γT (〈sf1(0), NA〉, sf2(0)) max{Qt(sf2(0), NA), Qt(s
f
2(0), C0)}

+ γT (〈sf1(0), NA〉, sf3(0)) max{Qt(sf3(0), NA), Qt(s
f
3(0), C0)}

+ γT (〈sf1(0), NA〉, sf4(0)) max{Qt(sf4(0), NA), Qt(s
f
4(0), C0)}

+ . . .

+ γT (〈sf1(0), NA〉, sX3 )Qt(s
X
3 , NA)

+ γT (〈sf1(0), NA〉, sX4 )Qt(s
X
4 , NA)

= 0.0141

+ 0.99
(
0.86×max(0.0141, 0)

)
+ 0.99

(
0.02×max(0.0201, 0)

)
+ 0.99

(
0.02×max(0.0106, 0)

)
+ 0.99

(
0×max(0.0141, 0)

)
+ . . .

+ 0.99
(
0.01× 0.0240

)
+ 0.99

(
0.00×−0.005

)
= 0.0270

Table C.1 reports the progression of our Q values estimates for each iteration of the learning

rule. At iteration 200, the Q value estimates exhibit minor deviations of less than 0.0001 from the

values computed in the previous iteration. This stability indicates the Q-learning rule has converged

and we can terminate the iterative process of the learning rule. We can observe the learning process

of our estimation method via the progression of Q(sb1(0), NA). In iteration 1, Q(sb1(0), NA) takes on

a value of -0.0031, but at termination, Q(sb1(0), NA) is now positive at 0.0763. Recall that iteration

1 reports the expected immediate profit if the order executes in the next transition, whereas our

final iteration reports the expected profit if the order is optimally managed up until execution or

cancellation. Q(sb1(0), NA) reflects the scenario in which the trader leaves an order at the back
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half of the limit order book when both the bid and ask queue sizes are small. If this order were

to execute immediately, the order likely faces adverse selection by a large incoming order, hence a

negative immediate profit. In contrast, if the order does not immediately execute, the trader can

manage the order until favorable market conditions, thereby giving a long term positive expected

profit.

Table C.1
Q-learning rule

This table shows the Q value estimates of the conditional expected profit of a limit order for all experience tuples at
the end of each iteration of the Q-learning rule defined by (13). The bottom row labeled Difference, reports the sum
of the total change in estimates after each iteration.

Iteration 1 Iteration 2 Iteration 3 . . . Iteration 199 Iteration 200

Q(sf1 (0), NA) 0.0141 0.0270 0.0387 0.1492 0.1492

Q(sf2 (0), NA) 0.0201 0.0357 0.0477 0.0737 0.0737

Q(sf3 (0), NA) 0.0106 0.0210 0.0311 0.1868 0.1868

Q(sf4 (0), NA) 0.0141 0.0271 0.0389 0.1686 0.1686

Q(sb1(0), NA) -0.0031 -0.0019 -0.0008 0.0763 0.0763

Q(sb2(0), NA) -0.0065 -0.0050 -0.0038 0.0125 0.0125

Q(sb3(0), NA) 0.0000 0.0002 0.0006 0.0622 0.0622

Q(sb4(0), NA) 0.0000 0.0003 0.0008 0.0527 0.0527
Q(sX1 (1), NA) 0.0009 0.0016 0.0022 -0.0025 -0.0026
Q(sX2 (1), NA) -0.0276 -0.0522 -0.0742 -0.2657 -0.2657
Q(sX3 (1), NA) 0.0240 0.0456 0.0650 0.2287 0.2287
Q(sX4 (1), NA) -0.0005 -0.0011 -0.0017 -0.0230 -0.0230
Q(sC(0), NA) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sf1 (0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sf2 (0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sf3 (0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sf4 (0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sb1(0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sb2(0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sb3(0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Q(sb4(0), C) 0.0000 0.0000 0.0000 0.0000 0.0000

Difference 0.1215 0.1024 0.0915 0.00017 0.00015

Table C.2 reports the converged Q value estimates for the states where the trader has a choice

to either do nothing, NA, or cancel their order C. The trader’s optimal action is the action that

gives the highest Q value. For example, when the market is in state s1 and the trader has a limit

order at the front half of the queue, the long run expected profit is 0.1492 if the trader chooses to

do nothing, and the long run expected profit is 0 if the trader chooses to cancel their order. Given

these two scenarios, it is optimal for the trader to leave their order at the front half of the queue

as this action provides a higher long term expected profit.
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Table C.2
Q-value estimates

Table C.2 reports the conditional expected profit estimates for a limit order resting in four possible different market
states (s1,..,s4) for the actions to leave the order (NA) or cancel the order (C).

Front half Back half

NA C NA C
s1 (small bid, small ask) 0.1492 0 0.0763 0
s2 (small bid, big ask) 0.0737 0 0.0125 0
s3 (big bid, small ask) 0.1868 0 0.0622 0
s4 (big bid, bid ask) 0.1686 0 0.0527 0
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Table 1
Summary statistics

This table reports summary statistics for our sample stocks. Our sample period covers July 3, 2017 to Septemeber 29,
2017 for 20 actively traded stocks on the ASX. We report the average bid ask spread in cents (Spread), the average
trade price in AUD (Price), and the average number of daily trades, order deletions and order submissions labelled
No. trades, No. deletions and No. submissions, respectively.

Spread Price No. trades No. deletions No. submissions

AMC 1.03 15.72 6970 9247 21142
AMP 1.01 5.11 3026 4279 9318
ANZ 1.08 29.51 11326 68791 88536
BHP 1.06 25.79 14268 20304 44994
BXB 1.04 9.40 5484 6686 16001
CBA 1.61 79.39 21498 33810 71510
CSL 2.59 129.87 16198 42372 70900
IAG 1.01 6.54 3530 5273 11142
MQG 1.97 87.20 13999 32589 57422
NAB 1.06 30.40 11714 69080 89394
NCM 1.12 21.34 10735 17888 36675
ORG 1.02 7.29 4637 6220 14191
QBE 1.08 11.14 7779 9758 22926
RIO 1.70 65.61 15955 30138 57912
STO 1.01 3.51 3255 4668 10058
SUN 1.02 13.61 7920 10994 24647
TLS 1.00 3.94 3999 4754 11186
WBC 1.08 31.62 13469 38652 62169
WOW 1.05 26.04 9208 16856 32784
WPL 1.08 29.27 11203 22482 41672
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Table 2
Expected profit summary statistics

This table reports the summary statistics on the expected profit of an optimally managed limit order. The first row
reports summary statistics for orders placed at all price levels, whereas rows 2 to 4 report summary statistics for
limit orders conditional on their price level.

Order Location Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dev.

All prices -0.695 0.053 0.155 0.197 0.302 1.566 0.179
Best bid -0.695 0.164 0.325 0.319 0.465 1.566 0.213
One tick behind -0.615 0.122 0.191 0.202 0.277 1.089 0.124
Two ticks behind -0.662 0.023 0.056 0.071 0.103 0.939 0.066
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Table 3
Expected profit and queue position

This table reports estimation results for the following OLS regression:

Qs = β1QueuePoss + State Fixed Effects + εs,

where Qs is the expected profitability of a limit order estimated via our RL model. The independent variable is
QueuePos, with fixed effects controlling for all other variables. Columns 1, 2 and 3 present the regression results for
subsamples in which the order rests at the best bid, one level behind the best bid and two levels behind the best bid,
respectively. We report the mean coefficient across all sample stocks (Mean), along with the number of significantly
positive (No. +) and negative (No. -) coefficients out of the full sample of 20 stocks.

Best bid 1 behind best bid 2 behind best bid

Mean -0.12 -0.05 -0.01
No. + 0 0 0
No. - 20 20 20

R-Square 0.89 0.88 0.89
No. obs 5625 5625 5625
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Table 4
Expected profit and queue size

This table reports estimation results for the following OLS regression:

Qs = β1q
B0
s + β2q

B1
s + β3q

B2
s + β4q

A0
s + State Fixed Effects + ε,

where Qs is the expected profitability of a limit order estimated via our RL model, qBi is the queue size on the best
bid at price level i and qA0 is the queue size on the best ask. Columns 1, 2 and 3 present the regression results for
subsamples in which the order rests at the best bid, one level behind the best bid and two levels behind the best bid,
respectively. We report the mean coefficient across all sample stocks (Mean), along with the number of significantly
positive (No. +) and negative (No. -) coefficients out of the full sample of 20 stocks.

Best bid 1 behind best bid 2 behind best bid

qB0 Mean 0.06 -0.05 -0.02
No. + 19 0 0
No. - 0 20 20

qB1 Mean 0.05 0.01 -0.01
No. + 18 14 0
No. - 2 5 20

qB2 Mean 0.04 0.03 0.00
No. + 14 16 12
No. - 3 4 6

qA0 Mean -0.04 0.01 0.01
No. + 0 19 20
No. - 20 0 0

R-Square 0.88 0.89 0.83
No. obs 5625 5625 5625
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Table 5
Expected profit and volatility

This table reports estimation results for the following OLS regression:

Qs = β1V olatilitys + State Fixed Effects + εs,

where Qs is the expected profitability of a limit order estimated via our RL model. The independent variable is
V olatility, with fixed effects controlling for all other variables. Column 1 presents the regression results for all stocks.
Column 2 (3) presents results on the subsample of stocks that are most (least) tick constrained. We report the mean
coefficient across all sample stocks (Mean), along with the number of significantly positive (No. +) and negative (No.
-) coefficients out of the sample stocks. The table reports the number of sample stocks for each column (No. stocks)

All stocks Constrained Unconstrained

Mean 0.38 -2.39 5.82
No. + 9 0 5
No. - 11 5 0

R-Square 0.86 0.86 0.87
No. stocks 20 5 5
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Table 6
Variable relative importance

For each variable ,k, that partially defines the market state (i.e., Price level, Queue position, Bid size 1, Bid size 2,
Bid size 3, Ask size, Volatility), this table reports the Mean Decreased Accuracy (MDA) estimated as follows:

MDAk =

S∑
s=1

(
|(Q(s,NA)−Q(skR, NA))|

Q(s,NA)

)
/S,

where Q(s,NA) is the expected profit of a limit order while in state s and taking action NA, and Q(skR, NA) is the
estimate associated with state sR when variable k is randomized. For each variable k, we repeat this process 100
times and report the mean and standard deviation of the MDA.

Price level Queue position Bid size 1 Bid size 2 Bid size 3 Ask size Volatility

Mean 2.54 0.20 1.22 1.17 0.68 0.68 0.56
St. dev. 1.34 0.07 0.34 0.71 0.48 0.19 0.33

52



Table 7
Summary statistics for the value of the option to cancel

Table 7 reports the summary statistics on the expected profit of the option to cancel a limit order. The first row
reports summary statistics for orders placed at all price levels, whereas rows 2 to 4 report summary statistics for
limit orders conditional on their price level.

Order Location Min. 1st Qu. Median Mean 3rd Qu. Max. St Dev.

All prices 0.000 0.003 0.008 0.024 0.019 0.483 0.052
Best bid 0.000 0.004 0.012 0.049 0.051 0.483 0.081
One tick behind best bid 0.001 0.005 0.010 0.017 0.020 0.161 0.020
Two ticks behind best bid 0.000 0.002 0.004 0.007 0.009 0.059 0.007
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Table 8
The value of the option to cancel

This table reports estimation results for the following OLS regression:

value of option to cancel = β0 + β1q
B0 + β2q

B1 + β3q
B2 + β4q

A0 + ε,

where the dependent variable is the option value to cancel a limit order estimated via our RL model, qBi is the
queue size on the best bid at price level i and qA0 is the queue size on the best ask. Columns 1, 2 and 3 present
the regression results for subsamples in which the order rests at the best bid, one level behind the best bid and two
levels behind the best bid, respectively. We report the mean coefficient across all sample stocks (Mean), along with
the number of significantly positive (No. +) and negative (No. -) coefficients out of the full sample of 20 stocks.

Best bid 1 behind best bid 2 behind best bid

qB0 Mean -0.034 -0.015 -0.019
No. + 0 1 0
No. - 20 19 20

qB1 Mean -0.044 -0.032 -0.021
No. + 1 0 2
No. - 19 20 18

qB2 Mean -0.034 -0.031 -0.028
No. + 1 0 0
No. - 19 20 20

qA0 Mean 0.014 0.025 0.035
No. + 20 20 20
No. - 0 0 0

Mean R-squared 0.16 0.24 0.34
Mean No. obs 625 625 625
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Figure 1. Limit order book evolution

Figure 1 depicts the possible evolution of the limit order book from t0 to two possible future states at t1 (A and B).
The white rectangles represent the bid volume and the grey rectangles represent the ask volume. Prices are shown
on the x-axis, with the best bid and offer at t0 being 13 and 14, respectively. The trader’s limit order is in black and
starts at the back of the queue at t0 at price 12.
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Figure 2. Traders sequential decision making process

Figure 2 depicts the time line of the trader’s decision making process when monitoring their limit order. At the end
of each interval, the trader observes current market conditions and decides to leave or cancel their order. This process
repeats until the order is either executed or cancelled.
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Figure 3. Boxplot of expected profit

This figure plots a boxplot of the expected profit of a limit order, estimated via our RL model. The figure contains
the estimates from all 20 sample stocks. The figure depicts a boxplot for three subsamples conditional on the price
level the limit order is resting at.
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