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Abstract

Some market crashes occur because of significant imbalances in demand and

supply. Yet, conventional models fail to explain the large magnitudes of price de-

clines. We propose a unified structural framework for explaining crashes, based

on the insights of market microstructure invariance. A proper adjustment for dif-

ferences in business time across markets leads to predictions which are different

from conventional wisdom andconsistent with observed price changes during the

1987 market crash and the 2008 sales by Société Générale. Somewhat larger-than-

predicted price drops during 1987 and 2010 flash crashes may have been exacer-

bated by too rapid selling. Somewhat smaller-than-predicted price decline during

the 1929 crash may be due to slower selling and perhaps better resiliency of less

integrated markets.

JEL Codes: G01, G28, N22.

Keywords: crashes, liquidity, price impact, market depth, systemic risk, market mi-

crostructure, invariance.

*Kyle: Robert H. Smith School of Business, University of Maryland, College Park, MD, USA,
akyle@rhsmith.umd.edu. Albert Kyle was a staff member of the Task Force on Market Mechanisms
(“Brady Commission”) in 1987–1988, worked on a research project examining high-frequency trading in
the CME S&P 500 E-mini futures market for the Commodity Futures Trading Commission during 2009–
2010, and has worked with the Securities and Exchange Commission, the Department of Justice, and the
Federal Reserve Bank of Atlanta. He has been a member of the CFTC Technology Committee and is a
member of the FINRA Economic Advisory Board. He is a member of the Board of Directors of an asset
management company which trades equities on behalf on institutional investors.

†Obizhaeva: New Economic School, Moscow, Russia, aobizhaeva@nes.ru.



After stock market crashes, rattled market participants, frustrated policymakers, and puz-

zled economists are usually unable to explain what happened. Noticeably heavy selling pres-

sure has been often recorded during crashes, and it is known that large bets move prices in the

direction of trades, as discussed by Kraus and Stoll (1972), Grinold and Kahn (1995), and Gabaix

(2009). Yet, there is no compelling quantitative explanation for why relatively small quantities

sold might have led to such large price dislocations in the highly liquid stock market.

We investigate this issue through the lens of the market microstructure invariance, a con-

ceptual framework recently developed by Kyle and Obizhaeva (2016). By analysing prices and

quantities in market-specific business time rather than in calendar time, this approach explains

why bets of observed sizes could indeed create market crashes.

We illustrate our approach by studying five crash events, chosen because data on the mag-

nitude of contemporaneous selling pressure became publicly available in their aftermaths:

• After the stock market crash of October 1929, the report by the Senate Committee on

Banking and Currency (1934) (the “Pecora Report”) attributed the sharp plunge in bro-

ker loans to forced margin selling during the crash.

• After the October 1987 stock market crash, the U.S. Presidential Task Force on Market

Mechanisms (1988) (the “Brady Report”) reported quantities of stock index futures con-

tracts and baskets of stocks sold by portfolio insurers during the crash.

• After the futures market dropped by 20% at the open of trading three days after the 1987

crash, the Commodity Futures Trading Commission (1988) documented large sell orders

executed at the open of trading; the press identified the seller as George Soros.

• After the Fed cut interest rates by 75 basis points in response to a worldwide stock market

plunge on January 21, 2008, Société Générale revealed that it had been quietly liquidat-

ing billions of Euros in stock index futures positions accumulated earlier by rogue trader

Jérôme Kerviel.

• After the flash crash of May 6, 2010, the Staffs of the CFTC and SEC (2010b,a) cited as its

trigger the large sales of futures contracts by one entity, identified in the press as Waddell

& Reed.
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We do not study the flash crash events in 1961 and 1989, the LTCM crisis in 1998, the quant

crash in August of 2006, or the U.S. Treasury note flash rally in October of 2016 because data on

the size of sales which precipitated the events is not available.

Each of the five crashes is associated with a large sell bet, where we think of a “bet” (or

“meta-order”) as being a statistically independent decision to either speculate on information

or to hedge risks by buying or selling significant quantities of risky financial assets, often imple-

mented as sequences of orders executed over time. These bets resulted either from trading by

one entity or from correlated trading of multiple entities with the same motivation.

Many practitioners and academics believe that during these five crashes selling pressure

was quantitatively too small to induce significant price declines. We call this interpretation

“conventional wisdom.” Scholes (1972), Harris and Gurel (1986), and Wurgler and Zhuravskaya

(2002) illustrate it by saying that the demand for financial assets is elastic in the sense that sell-

ing 1% of market capitalization has a price impact of less than 1%. Since annual turnover rates

do not vary significantly across stocks, this also implies that sales of 5% of average daily volume

is expected to have only modest impact on stock prices. Extrapolated to the market for stock

index futures with its extremely high liquidity, these estimates further suggest that selling 5%

of daily volume must have even smaller impact there. When applied to market bets during the

five crashes, this thinking implies tiny market impact.

Microstructure invariance implies a different way to extrapolate impact estimates from stocks

to index futures. This approach implies much bigger price impact of bets in liquid futures mar-

kets, because it models trading in market-specific business time, not calendar time.

Indeed, we show below that invariance principles imply business time passes about 225

times faster in the equities market as a whole than in markets for less liquid individual stocks.

Thus, one calendar day of trading in stock index futures is equivalent to 225 calendar days of

trading in a stock. Intuitively, a bet of 5% of one day’s volume for index futures is equivalent to

selling of 5% of daily volume each day for 225 consecutive days (not one day) for a stock, or a

bet of 1125% (= 5%×225) of one day’s volume. A bet of 5% of one day’s volume for index futures

must have much bigger (not smaller) price impact than a bet of 5% of one day’s volume for less

liquid individual stock.

Invariance principles imply a universal formula for market impact: It is a function of the dol-

lar size of a bet, expected dollar volume, returns volatility, and a couple of invariant parameters.

Kyle and Obizhaeva (2016) calibrate these parameters using a database of about 400,000 port-
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folio transition orders executed during the period 2001–2005 in U.S. stocks. Portfolio transition

orders are well suited for calibration of market impact functions because they can be thought

of as exogenous shocks to demand and supply. In this paper we extrapolate the estimates from

the sample of relatively small individual U.S. stocks to the gigantic U.S. stock market as a whole

and from 2001–2005 to other historical periods. The implied estimates are indeed large enough

to explain crashes.

Table 1 summarizes our results for each of the five crash events. It shows the actual percent-

age decline in market prices, the percentage decline predicted by invariance, the percentage

decline predicted by conventional wisdom, the dollar amount sold as a fraction of average daily

volume, and the dollar amount sold as a fraction of one year’s GDP. The estimates implied by

conventional wisdom assume that market impact is equal to the percentage of market capi-

talization sold. Other market impact estimates based on studies by Grinold and Kahn (1995),

Torre (1997), Almgren et al. (2005), and Frazzini, Israel and Moskowitz (2018)—discussed later—

produce estimates similar to conventional benchmarks.

Table 1: Summary of Five Crash Events: Actual and Predicted Price Declines.

Actual Predicted Predicted %ADV %GDP
Invariance Conventional

1929 Market Crash 25% 46.43% 1.36% 265.41% 1.136%
1987 Market Crash 32% 16.77% 0.63% 66.84% 0.280%
1987 Soros’s Trades 22% 6.27% 0.01% 2.29% 0.007%

2008 SocGén Trades 9.44% 10.79% 0.43% 27.70% 0.401%
2010 Flash Crash 5.12% 0.61% 0.03% 1.49% 0.030%

Table 1 shows the actual price changes, predicted price changes, and bets as percent
of average daily volume and GDP.

The 1929 crash, the 1987 crash, and the Société Générale trades of 2008 involve very large

sales of more than 25% of average daily volume or more than 0.25% of GDP. By contrast, the

sales by Soros in 1987 and the flash crash of 2010 both involve sales of only 2.29% and 1.49% of

average daily volume. For all events, the price impact estimates based on conventional wisdom

are minuscule in comparison to actual price changes. In contrast, the magnitudes of invariance

estimates are more similar to actual price declines.
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Yet, there is substantial variation across events in forecasting errors, which may be related to

the speed with which events unfold. The actual price decline of 25% during the 1929 crash was

smaller than the forecast of 46.43%, perhaps due to efforts made to spread the impact of margin

selling out over several weeks rather than several days. The Soros 1987 trades and the 2010 flash

crash were both flash-crash events in which prices declined rapidly and then recovered a few

minutes later, perhaps due to the unusually rapid rate at which bets were executed.

Except for the time frame of execution, the spirit of invariance suggests that institutional de-

tails related to market structure, information asymmetries, or motivation of traders should not

affect market impact estimates much. Yet, high variation in the degree of market integration

across assets, lack of capital available to take the other sides of large bets, and extreme disrup-

tions to the market mechanism may help explain why some price declines might have deviated

from predicted levels. In 1929, smaller-than-predicted price declines may have been reduced

by markets being less integrated than today, and potential buyers were keeping capital on the

sidelines to profit from price declines widely expected to occur if margin purchases were liqui-

dated. In 1987, larger-than-predicted price declines may have been exacerbated by breakdowns

in the market mechanism documented in the Brady Report.

A stock market crash is a tail event in the probability distribution of bet sizes. The invariance-

implied distributions of bet sizes calibrated from the size of portfolio transition orders for indi-

vidual stocks is very close to log-normal with log-variance of 2.53. Extrapolated to market bets,

this implies that the two flash crashes are 4.5-standard-deviation events, which are expected

to occur several times per year. We conjecture that these bets usually do not cause crashes

because they are executed more slowly and under conditions of lower volatility than the two

unusual flash crashes. The three other large crashes are approximately 6-standard-deviation

events, which are expected to occur only once in hundreds or thousands of years. This suggests

either that typical bets have a larger standard deviation than portfolio transition orders or that

the tail of the distribution is more consistent with a power law than a lognormal distribution.

The bet-induced crashes differ conceptually from macroeconomic crises including sovereign

defaults, banking crises, exchange rate crises, and bouts of high inflation, as catalogued by Rein-

hart and Rogoff (2009). Bet-induced crashes are likely to be short lived, especially if followed by

appropriate government policy. Recovery from economic crises in contrast takes many years,

even after significant changes in macroeconomic policies and market regulation. For example,

the looser monetary policy implemented by Federal Reserve System immediately after the 1929

4



crash calmed down the market by the end of 1929. Even though the wealth effect of declin-

ing equity prices may have helped trigger a recession by reducing consumption, Friedman and

Schwarz (1963) write that the Great depression of the 1930s resulted from a subsequent shift

towards a deflationary monetary policy, not from the 1929 crash itself. Similarly, the unwinding

of Jérôme Kerviel’s gigantic rogue bet in January of 2008 was followed by the collapse of Bear

Stearns a few weeks later, but the deep and long lasting recession which unfolded in 2008–2009

was triggered by the bursting of the real estate credit bubble, not from liquidation of his bet.

Unable to find rational quantitative explanations, some researchers believe that market

crashes result from irrational behavior. The “animal spirits” hypothesis of market crashes says

that price fluctuations occur as a result of random changes in psychology and emotions, which

may not be based on economically relevant information or rational calculations. Keynes (1936)

said that financial decisions may be taken as the result of “animal spirits—a spontaneous urge

to action rather than inaction, and not as the outcome of a weighted average of quantitative

benefits multiplied by quantitative probabilities.” Akerlof and Shiller (2009) echo Keynes: “To

understand how economies work and how we can manage them and prosper, we must pay at-

tention to the thought patterns that animate people’s ideas and feelings, their animal spirits.”

Promptly after the 1987 crash, Shiller (1987) surveyed traders and found that “most investors

interpreted the crash as due to the psychology of other investors.”

We disagree with the animal spirits theory of crashes. Before the 1929 crash, market partici-

pants widely discussed the possibility that forced liquidations of margin accounts would lead to

a collapse in prices. Before the 1987 crash, market participants discussed that portfolio insur-

ance sales might lead to a market meltdown. In the absence of quantitative justification, these

prescient views were largely dismissed due to a deeply entrenched ideological belief that the

demand for equities is elastic. Here we provide quantitative justification for a theory of crashes

based on the market impact of large bets, not based on psychology. The margin sales of 1929,

portfolio insurance sales of 1987, and liquidation of Kerviel’s rogue positions were all large bets

resulting from rapid execution of mechanical trading strategies, not from psychology. While

the sales of George Soros in 1987 and sales of Waddell and Reed in 2010 may reflect the animal

spirits of one person and one entity, the rapid recovery of prices after these events suggest the

opposite of market-wide irrationality or psychological contagion.

The remainder of this paper discusses the conventional wisdom in assessing market impact,

market microstructure invariance, particulars of each of the crash events, and lessons learned.
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1 Market Impact of Large Bets: Previous Literature

Previous studies have used different methodologies to obtain to obtain widely varying estimates

of the market impact of large bets. This literature can be divided into two strands. The first

strand, which we call “conventional wisdom,” examines the price effects of seasoned equity of-

ferings, changes in the composition of the S&P 500 index, and similar events. These studies

imply that the price elasticity of demand for stocks is elastic in the sense that selling one per-

cent of the market capitalization of a single stock is associated with a price decline of less than

one percent. The second strand examines the price impact of trades by institutional investors.

These studies imply that the demand for individual stocks is inelastic in the sense that selling

one percent of the market capitalization of a stock is associated with a price decline greater than

one percent.

Conventional Wisdom. Based on data on secondary equity distributions, Scholes (1972) claimed

that the price impact of large sales of equities is negligible. Harris and Gurel (1986), Wurgler

and Zhuravskaya (2002), and others infer from the price response to additions and deletions

of stocks to equity indices like the S&P 500 that selling 1% of an individual stock’s shares out-

standing has a price impact of at most 1%. Wurgler and Zhuravskaya (2002, Table IV, p. 603)

provide a summary of demand elasticities inferred from different papers. The elasticities range

from 3000, representing an almost infinitely elastic demand schedule from Scholes’s study, to 1.

These studies all imply an elastic demand for stocks.

When extrapolated from the market for one stock to the stock market as a whole using the

same elasticity, these empirical studies support the conventional wisdom that selling pressure

does not create stock market crashes. From a theoretical perspective, the conventional wisdom

is based on the logic of perfectly competitive capital markets, the capital asset pricing model,

and the efficient markets hypothesis. Theoretically, the market risk premium of 5%–7% per year

reflects compensation for bearing the risk of the entire stock market for one year. When large

bets are executed, market participants taking the other side of these bets are exposed to risks

of much smaller magnitude than the entire market and hold these positions over much shorter

horizons than one year, usually a few days or minutes. Thus, the compensation required for

absorbing these bets should be dramatically smaller than the equity market risk premium.

Indeed, when conventional wisdom was applied to the crash of 1987, prominent financial
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economists claimed that the price impact of reported sales was up to 100 times too small to

generate a crash. Leland and Rubinstein (1988), the academics most closely associated with

portfolio insurance in 1987, say, “To place systematic portfolio insurance in perspective, on

October 19, portfolio insurance sales represented only 0.2% of total U.S. stock market capital-

ization. Could sales of 1 in every 500 shares lead to a decline of 20% in the market? This would

imply a demand elasticity of 0.01—virtually zero—for a market often claimed to be one of the

most liquid in the world.” Miller (1991) makes similar claims about the 1987 crash: “Putting a

major share of the blame on portfolio insurance for creating and overinflating a liquidity bub-

ble in 1987 is fashionable, but not easy to square with all relevant facts. . . . No study of price-

quantity responses of stock prices to date supports the notion that so large a price decrease

(about 30%) would be required to absorb so modest (1%–2%) a net addition to the demand for

shares.” Indeed, Brennan and Schwartz (1989) calibrated a theoretical model of competitive

capital markets and showed that portfolio insurance sales (of 0.63% of market capitalization)

would have had an effect on prices about 100 times smaller than the actual size of the 1987

crash (of 32%).

Since price pressure was thought to be too small to explain quantitatively market crashes,

some observers of the 1987 stock market crash, including Miller (1988, p. 477) and Roll (1988),

sought to explain the large price declines as market reactions to new fundamental information

rather than response to trading. Yet, it was difficult to find new information to which market

prices would have reacted so drastically.

In our analysis below, we define conventional wisdom using the least conservative conven-

tional estimate and assume a unit demand elasticity for stocks: Selling 1% of capitalization

moves prices down by 1%. Mathematicallly, suppose a stock’s price is P , outstanding shares are

N , and shares sold are Q. Then, the expected log-percentage market impact ∆ lnP is Q/N :

∆ lnP ≈ ∆P

P
= Q

N
. (1)

Throughout this paper, we adopt the convention that Q is unsigned trade size and ∆P/P is

expected unsigned price impact.1

1The size of market impact ∆ lnP is either the expectation of the post-trade log-price minus pre-trade log-price
for buy bets or the expectation of the pre-trade log-price minus post-trade log-price for sell bets. A similar formula
can be written for simple percentage impact∆P/P , where∆P is either the difference between post-trade price and
pre-trade price for buy bets or the difference between pre-trade price and post-trade price for sell bets.
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The conventional market impact function can be also expressed in terms of average daily

volume. Let V denote daily volume in shares. Assume for simplicity that an asset’s turnover is

approximately 100% per year consisting of 250 trading days. Since 1% of market capitalization

is approximately equal to 250% of daily volume, the conventional wisdom (1) can be interpreted

as

∆ lnP ≈ ∆P

P
= Q

250 days ·V . (2)

This equation implies that in any market, regardless of its liquidity, selling a fixed fraction of

daily volume or market capitalization has the same small percentage price impact. For example,

selling 25% of average daily volume, which represents 0.10% of shares outstanding, has tiny

price impact of about 0.10%, or 10 basis points.

The Brady Report used the same intuition to compare daily volume elasticities in the 1929

crash to the 1987 crash:

“To account for the contemporaneous 28% decline in price, this implies a price

elasticity of 0.9 with respect to trading volume which seems unreasonably high. As

a percentage of total shares outstanding, margin-related selling would have been

much smaller. Viewed as a shift in the overall demand for stocks, margin-related

selling could have accounted realistically for no more than 8% of the value of out-

standing stock. On this basis, the implied elasticity of demand is 0.3 which is be-

yond the bound of reasonable estimates.”

Institutional Trades Academic studies of large institutional bets typically find that the de-

mand for stocks in inelastic, not elastic. Kraus and Stoll (1972) study block trades of large NYSE

stocks. More recent estimates of market impact from executions of large orders by institutional

investors include Chan and Lakonishok (1995, 1997) and Keim and Madhavan (1997). Some

studies find nonlinear price impact. The “square root model” or Barra model, described by Gri-

nold and Kahn (1995) and Torre (1997), says that the execution of an order of size Q on average

moves price by ∆P/P = 1 ·σ · (Q/V )1/2. Frazzini, Israel and Moskowitz (2018) estimate a more

complicated version of the square root model. Almgren et al. (2005) incorporate information

on execution horizon T into a model with concave price impact similar to a square root model.

The square root model implies that an order for 25% of one days volume in a stock with 2%

daily volatility implies a price impact of 100 basis points. With 100% annual turnover, this im-
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plies an elasticity of demand of 0.10, which is similar to the price impact from other studies of

large institutional orders.

While the inelastic demand from these models implies more price impact than conventional

wisdom, a demand elasticity of only 0.10 is nevertheless not small enough to generate crashes.

This is shown in Appendix B, which extrapolates the estimates of these models to crash events.

For crashes to result from selling pressure, the elasticity needs to be approximately 0.01, yet

another order of magnitude more inelastic than impied by these studies. The square root model

makes it especially difficult to explain crashes because its implied concave price impact makes

marginal price impact decrease as the size of large bets increases. To explain crashes, we use a

linear price impact model, which is popular with finance theorists because is excludes simple

forms of arbitrage (e.g., Huberman and Stanzl (2004)).

2 Market Impact of Large Bets: Invariance

Market microstructure invariance can explain stock market crashes because it implies an al-

ternative methodology for extraplating price impact from the less liquid markets for individual

stocks to the more liquid market for all stocks. Instead of assuming that the elasticity of de-

mand is constant across assets, invariance implies that the demand for more liquid stocks is

more inelastic than for less liquid stocks. Since the equity market as a whole is much more liq-

uid than the market for an individual stock, the demand elasticity becomes small enough—and

price impact therefore large enough—to explain stock market crashes. While we disagree with

the conventional wisdom that the demand for stocks is elastic, our approach is consistent with

inelastic demands estimated for individual stocks based on studies of institutional trades.

Market Microstructure Invariance. Invariance is based on the simple intuition that trading in

a speculative market is a game in which fundamental risks are reshuffled among participants in

business time. The speed of business time varies significantly across assets and proportionally

to the rate at which new bets, or trading ideas, arrive. Trading is fast in liquid markets and slow

in illiquid markets.

Invariance consists of two conjectures: (1) The distribution of standard deviations of dollar

gains and losses on bets is the same across markets, when standard deviation is measured in
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units of business time.2 (2) The expected dollar costs of executing similar bets are constant

across markets, when similarity of bets is defined in terms of the same dollar risks transferred per

unit of business time. These invariance conjectures have important implications for the rate at

which financial markets transfer risks.

We review below the derivation of these scaling laws using a simplified version of Kyle and

Obizhaeva (2016).3 Kyle and Obizhaeva (2020) show how to get the same scaling laws in the

context of an equilibrium model of speculative trading with endogenous acquisition of private

information and endogenous entry into the market. In the model, scaling laws for bet sizes

and transaction costs ultimately follow from the assumption that efforts required to generate

private signals do not vary across markets. This is likely to hold, at least approximately, in the

equilibrium where trader try to allocate their skills optimally across markets to maximize the

value of trading.

Business time. For a given stock, suppose that bets of average size Q̄ arrive at rate γ. For a

typical stock, we might have γ= 100 bets per day and Q̄ = 10000 shares. As γ increases, market

participants transfer risks more quickly, and business time passes at a faster rate relative to

calendar time.

Since individual bets are difficult to observe, it is hard to measure γ and Q̄ in practice. Yet,

up to some constant which is the same for all stocks, γ and Q̄ can be inferred from daily dollar

volume P ·V and daily returns volatility σ. The proof is based on two simple equations.

First, define trading activity as the product of dollar volume and returns volatility:

W := P ·V ·σ. (3)

Trading activity W better reflects the rate at which the market transfers risks than dollar volume

P ·V because it takes into account that trading assets with higher volatility σ transfers more risk

per dollar traded. Since bets sum up to volume, V = γ ·Q̄, we can write W in terms of γ and Q̄:

W = γ ·Q̄ ·P ·σ. (4)

2This conjecture does not say that dollar returns volatility or returns volatility are constant in business time.
3Kyle and Obizhaeva (2018b) obtain similar predictions using dimensional analysis and leverage neutrality. Kyle

and Obizhaeva (2018a) derive them from the meta-model, a system of simple equations inherent to many mi-
crostructure models. Kyle, Obizhaeva and Wang (2014) provide illustration using a one-period equilibrium model.
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Since dollar volume P ·V has units of dollars/day and returns volatility has units per day1/2,

trading activity W has units dollars/day3/2.

Second, the first invariance conjecture says that dollar risk P ·σ transferred by an average

bet of Q̄ shares per unit of business time 1/γ is invariant across markets. Thus, for some dollar

constant C̄ , such as C̄ = $2000, we have

Q̄ ·P · σp
γ
= C̄ . (5)

Equations (4) and (5) make up a system of two log-linear equations in two unknowns a :=
P ·Q̄ ·σ and γ:

a ·γ=W and a ·γ−1/2 = C̄ . (6)

The solution for a and γ is

a = C̄ ·
(

W

C̄

)1/3

and γ=
(

W

C̄

)2/3

. (7)

Now define H := 1/γ as the time interval between bets. For example, if γ= 100 bets per day

for some stock, then H is about 4 minutes during trading hours from 9:30 a.m. to 4:00 p.m.

Equation 7 implies that average dollar bet size PQ̄ and time between bets H are given by

P ·Q̄ = C̄

σ
·
(

W

C̄

)1/3

and H =
(

W

C̄

)−2/3

, where W := P ·V ·σ. (8)

Since W has units of dollars/day3/2 and C̄ has units of dollars, equations 8 have correct units of

dollars for P ·Q̄ and days for H .

Equations 8 show how to extrapolate the size and number of bets from one stock to another,

under the invariance assumption that C̄ is constant across markets. Define a benchmark stock

as a security with stock price P∗ = $40 per share, expected volume V ∗ = 106 shares per calendar

day, expected percentage returns volatility σ∗ = 0.02 per day1/2, and trading activity W ∗ = P∗ ·
V ∗ ·σ∗; these parameters would approximately correspond to a stock from the bottom of the

S&P 500 index. Suppose the time interval between bet arrives is, say, H∗ = 100 bets per day.

Equation (8) implies that H is inversely proportional to the 2/3 power of trading activity,

1

H
= 1

H∗ ·
( W

W ∗
)2/3 = 1

H∗ ·
( P ·V ·σ

P∗ ·V ∗ ·σ∗
)2/3

. (9)
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Business time H represents different lengths of calendar time for different assets: 4 minutes for

the benchmark stock, an hour for thinly traded stocks, less than one minute for actively traded

stocks, and about one second for the market as a whole. The conventional wisdom implic-

itly makes the mistake of extrapolating from one market to another under the assumption that

business time H is constant across markets.

Distribution of Bet Size. The logic of invariance can be applied to the entire distribution of

random bet sizes Q̃, not just the means Q̄. This logic implies that probability distributions of

bet sizes Q̃ must be the same across markets if Q̃ is scaled by trading volume per bet V ·H , rather

than by trading volume per calendar day V as implicitly assumed by conventional wisdom.

When bet size Q̃ is scaled by V H , the resulting scaled bet size Z̃ has a mean of one and the

same distribution for all stocks:

Q̃

V ·H
d= Z̃ which implies

Q̃

V H∗ =
(

W

W ∗

)−2/3

· Z̃ . (10)

Equivalent bets transfer the same dollar risks in business time. In calendar time, they corre-

spond to a smaller fraction of daily volume in markets with trading activity and thus shorter

time interval between bet arrivals.

Price Impact. The logic of invariance can be also extended to market impact. Think of bets

in two different markets as equivalent if they have the same scaled size Z̃ = Q̃/(V H). Bet cost

invariance conjectures that equivalent bets have the same price impact when scaled by returns

volatility in business time. Letitng ∆P/P denote price impact of a bet of size Q and letting

σ
p

H denote volatility in business time, bet cost invariance therefore implies an invariant price

impact function f () such that

∆P

P
=σ ·

p
H · f (Z ), where Z = Q

V H
. (11)

If the price impact function is modeled as a power function f (Z ) = α · Zβ with proportionality

constant α and exponent β, then equation (11) takes the form

∆P

P
=α ·σ ·

p
H ·

(
Q

V ·H

)β
. (12)
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Plugging H from equation (9) and assuming linear market impact yields

∆P

P
=α ·

(
W

C̄

)1/3

·σ ·
(

Q

V

)
, where W := PV σ

C̄
, with β= 1. (13)

In comparison with conventional intuition (2) that bets of the same fraction of daily volume

Q/V must have the same percentage price impact, holding volatility σ constant, the linear

specification (13) has the additional factor (W /C̄ )1/3, which shows up due to the faster pace

of business time in markets with higher trading activity. The factor (W /C̄ )1/3 implies that the

demand becomes more inelastic as trading activity W increases. Increasing W by a factor of

1000 decreases the elasticity of demand by a factor of 10, reducing demand elasticity from say

0.10 to 0.01. As we shall see, this makes the demand elasticity small enough that observed order

imbalances explain market crashes.

Intuition behind Equivalent Bets. We next compare the magnitude of selling pressure during

five market crashes with sizes of large institutional orders executed in U.S. equities.

As a yardstick for measuring the size of institutional orders, we rely on the data on 400,000+

portfolio transition orders from Kyle and Obizhaeva (2016). A portfolio transition occurs when

assets managed by one institutional asset manager are transferred to another manager. Trades

converting the legacy portfolio into the new portfolio are typically handled by a professional

third-party transition manager. Portfolio transitions represent some of the largest changes

in portfolios held by institutional investors during the year. We estimate the distributions of

portfolio transition orders to be symmetric around zero with unsigned order sizes close to log-

normal random variables with different log-means and the same log-variance of 2.53:

ln
(Q̃

V

)
∼N

(
−5.71− 2

3
· ln

( W

W ∗
)

, 2.53
)
. (14)

The empirical distribution of ln(Q̃/V ) has a slope of −2/3 with respect to change in the log of

trading activity ln(W ), as expected given prediction (10).

Figure 1 is the main figure of our paper. It shows two types of extrapolation across markets;

one is based on conventional wisdom and another is based on invariance. The vertical axis

is the log of order size as a fraction of daily volume ln(Q/V ). The horizontal axis is the log

of scaled trading activity ln(W /W ∗). The point ln(W /W ∗) = 0 corresponds to the benchmark
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stock with trading activity W ∗ from the bottom of the S&P 500 index. Trading activity varies by

a factor of about 106 (= exp(12+2)) from ln(W /W ∗) = −12 for the least actively traded stocks

to ln(W /W ∗) = 2.00 for the most actively traded stocks such as Apple. Trading activity in the

overall stock market is much higher, up to ln(W /W ∗) = 8.20; it is about 500 (= exp(8.20−2.0))

times larger than that of the most liquid stocks.

The (black) horizontal lines show the extrapolation direction implied by the conventional

wisdom. These iso-quants mark orders of sizes equal to a given percentage of calendar-day

volume. For example, the horizontal line |Q/V | = 5% represents orders equal to 5% of daily

volume.

The diagonal (red and green) lines with slopes of −2/3 show equivalent bets as implied by

invariance. The lowest (red) line identifies log-medians of Q/V for different markets, as im-

plied by invariance (14); this line intersects the vertical axis at −5.71, a point corresponding to

a median bet in the benchmark stock equal to exp(−5.71) ·V , or approximately 0.33% ·V . The

six (green) parallel lines above the median line mark orders whose log-sizes are one through

six standard deviations above the log-median sizes, respectively. Each log standard deviation

represents an increase in bet sizes by a factor of exp(2.531/2) ≈ 4.90.

For each of the 60 months from January 2001 through December 2005, the 400,000+ portfo-

lio transition orders are sorted into volume bins based on thresholds corresponding to the 30th,

50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for NYSE-listed

common stocks. The 600 blue diamonds in figure 1 represent the largest orders in each of 10

volume bins for each of 60 months. The diamond points form a cloud tilted along invariance-

implied iso-lines with slope of −2/3. The dots are certainly not on a horizontal line, as would be

predicted by the conventional wisdom. Since each bin contains on average about 650 points,

invariance and log-normality of order size suggest that these largest portfolio transition orders

should lie slightly below the 3-standard-deviation diagonal with predicted slope of −2/3. As

can be seen visually from the figure, this is approximately the case. The scatter plot of largest

portfolio transition orders confirms the predictions of the invariance hypothesis.

Figure 1 also depicts the five crash events by big round red dots. Extrapolating along hor-

izontal lines, the conventional wisdom would say that these five events are not unusual. The

two flash crashes are only 2.29% and 1.49% of daily volume. Even the largest crashes—the 1929

crash, the 1987 crash, and liquidation of Kerviel’s position—represent “only” 265%, 67% and

28% of daily volume and only 1.36%, 0.63%, and 0.43% of market capitalization, respectively.

14
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Figure 1: Largest Portfolio Transition Orders and Market Crashes.

This figure shows the largest portfolio transition orders for each month from Jan-
uary 2001 to December 2005 and for each of ten volume groups (blue points) as
well as the bets during five market crashes (red points). Volume groups are based
on thresholds corresponding to 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and
95th percentiles of dollar volume for common NYSE-listed stocks. The vertical
axis is | ln(Q/V )|. The horizontal axis is ln(W /W ∗), where W ∗ = 40 · 106 · 0.02 and
W = P ·V ·σ. The median order is −5.71−(2/3)·ln(W /W ∗) (red line). The x-standard
deviation events are −5.71− (2/3) · ln(W /W ∗)+x ·p2.53 (green lines).

These percentages of daily volume are not very different from what is seen in the largest portfo-

lio transition orders, which are often about 25% of daily volume in liquid stocks and even larger

percentage of daily volume (up to 700%) in illiquid stocks. Therefore, based on horizontal ex-

trapolation, nothing unusual would be expected to happen during crash episodes.
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Yet, in the context of invariance, extrapolation along diagonal lines with slope −2/3 shows

that the crash events are extremely large, even compared to the largest institutional orders.

The two flash crashes correspond to about 4.5-standard-deviation events. The 1929 crash, the

1987 crash, and the liquidation of Jérôme Kerviel’s positions correspond to about 6-standard-

deviation events. This suggests it would not be surprising that they caused significant price

dislocations.

Intuition about Turnover and Elasticity. The two invariance principles are consistent with

the intuition that all returns volatility results from the price impact of bets. Suppose, for sim-

plicity, that all bets in the benchmark stock, with 100 bets per day, are the same size and equal

to 1% of daily volume. Since the daily volatility of 200 basis points results from random impact

of 100 independently distributed bets, each bet must have a price impact of 20 basis points

(σ/
√

100 per day).

Now consider what would happen if trading volume increases by a factor of 8, holding

turnover constant. For the demand elasticity to remain constant, the price impact of must be

a constant proportion of the bet size as a fraction of volume or market capitalization: ∆P/P =
α ·σ · Q̄/V . If the number of bets increases from 100 per day to γ > 100 per day, then return

volatility decreases to the product of the square root of the number of bets
p
γ and the price im-

pact of each betα·σ·Q̄/V =α·σ/γ. We thus obtain daily return volatility equal to γ−1/2 ·σ·γ<σ:

Volatility is too small unless the number of bets does not change. Indeed, assuming the num-

ber of bets does not change is consistent with horizontal extrapolation implied by conventional

wisdom in Figure 1.

For more active markets to have more bets with constant turnover, linear price impact re-

quires the price impact formula to have an extra stock-specific impact factor which increases

as trading activity increases. The assumptions of invariance accomplish this precisely with the

extra factor proportional to W 1/3 in equation 13. The particular exponent 1/3 makes the model

satisfy the assumptions of invariance.

In our examples, we assume turnover is constant in business time. For the demand elasticity

to be constant with linear price impact, it would be hypothetically possible to add an additional

invariance principle that turnover is constant in business time, not calendar. This hypothesis

is empirically implausible. For example, if dollar volume increases by a factor of 8, resulting

in bet arrival γ increasing by a factor of 4, it can be shown that invariance would require the
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turnover rate to increase by a factor of 4 to keep the demand elasticity constant. This would

require market turnover to be about 225 times greater than the turnover of typical individual

stocks. Instead of making such a counterfactual empirical assumption, we allow dollar volume,

volatility, and turnover to be characteristics which vary arbitrarily across different assets.

Invariance-Implied Market Impact Formulas. We use a log-linear version of the linear im-

pact model (13). The expected percentage price impact from buying or quantity Q of a security

with share price P , expected daily volume V and daily expected volatility σ is given by

∆ lnP = λ̄

104
·
(

P ·V
P∗ ·V ∗

)1/3

·
( σ
σ∗

)4/3
· Q

H∗ ·V . (15)

This formula assumes benchmark stock values P∗ = $40 per share, V ∗ = 106 shares per day,

σ∗ = 0.02 per day1/2, with H∗ = 0.01 day ≈ 4 minutes. The dimensionless proportionality factor

λ̄ is scaled so that λ̄= 5.00 implies that the market impact of trading Q/V = 1% of daily volume

in the benchmark stock has a price impact of 5 basis points. Invariance says that this factor λ̄ is

the same for all markets and time periods.

Kyle and Obizhaeva (2016) estimate λ̄ using data on implementation shortfall of portfolio

transition orders.4 Introduced by Perold (1988), this metric is the difference between execution

price and “paper trading” benchmark price recorded before the order was placed. The cali-

brated value of λ̄ is equal to 5.00 with standard errors of 0.38. Thus, the predictions about price

changes during crashes have percentage errors of about 7%.

We use a log-linear version of the market impact model rather than a simple linear model

because our analysis deals with very large orders, sometimes equal in magnitude to trading vol-

ume of several trading days. In contrast, Kyle and Obizhaeva (2016) consider relatively smaller

portfolio transition orders with an average size of 4.20% and median size of 0.57% of daily vol-

ume; for these smaller orders, the distinction between continuous compounding and simple

compounding is immaterial.

4(Kyle and Obizhaeva, 2016, equation (37), p. 1400) estimate an average impact cost parameter of κ̄I = 2.50
basis points (standard error 0.19 basis points) for transition orders, not price impact coefficient λ̄ itself. Of course,
there is a tight connection between the two concepts. Assuming that orders are broken into pieces and executed
at prices which tend to increase along an upward sloping supply schedule, total price impact λ̄= 2×2.50 must be
about twice the average impact cost κ̄I . Although invariance also has implications for bid-ask spread costs, these
costs are negligible for large bets, and hence we ignore them. The implied standard error of λ̄ is 2× 0.19 basis
points, i.e., about 7% of the estimate 2×2.50.
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Equation (15) is a universal formula for market impact, which may be applied to different

markets and time periods. Having calibrated it on the sample of portfolio transition orders in

the individual U.S. stocks for 2001 through 2005, we next extrapolate the same formula to large

market bets and to different time periods.

In Appendix A, we discuss several implementation issues that need to be addressed in order

to apply invariance to data on the five crash events. The issues include defining boundaries of

the market, choosing proxies for expected volume and volatility, and understanding function-

ing of market institutions. Appendix B reports estimates based on alternative models of market

impact based on conventional wisdom and the literature on institutional trades.

Statistical Bias. Invariance explains why statistical estimates of the demand elasticity of stocks

ranges from -3000 to -0.01—across more than five orders of magnitude. Scholes (1972) re-

gressed percentage price changes on log-dollar-sizes of secondary stock offerings, obtaining

a slope coefficient close to zero. According to microstructure invariance, this regression is mis-

specified. If secondary offerings are large bets, larger stocks should have offerings of larger

dollar size, and such offerings should have lower price impact. This biases the slope coefficient

downward. Invariance implies that the misspecified slope coefficient may be zero.5 Studies of

index additions and deletions are also biased to the extent that they do not take into account

stock-specific characteristics. Studies of the price impact of institutional trading do tend to

divide stocks into volume or capitalization groups. This mitigates the bias and explains why

these studies obtain price impacts for individual stocks which are similar, if not identical, to

our estimates based on portfolio transition orders.

5Consider a simple hypothetical example. There are three stocks with the same volatility and trading volumes
which differ by a factor of 8: $5 million, $40 million, and $320 million per day. Consider three bets of size $200 000,
$400 000, and $800 000 dollars in the stock with $40 million per day volume. Invariance implies that equivalent
bet size doubles when volume increase by a factor of 8. Therefore, consider also three equivalent bets with half
the volume in the less active stock ($100 000, $200 000, $400 000) and twice the volume in the more active stock
($400 000, $800 000, $1 600,000). Invariance implies that the price impacts of equivalent bets falls by a factor of 2
when volume increases by a factor of 8. Therefore, assume price impacts of these nine bets are 200, 400, 800 basis
points in the least liquid stock; 100, 200, 400 basis points in the middle stock; and 50, 100, 200 basis points in the
most liquid stock. Now, consistent with Scholes’s methodology, consider a misspecified linear regression of log-
price-impact on log-size and a constant term for these 9 data points. The slope coefficient is exactly zero. This is
consistent with Scholes’s near infinite elasticity estimate. The constant term implies price impact of approximately
200 basis points. (Kraus and Stoll, 1972, footnote 22, p. 577) pointed out that brokerage fees applicable to Scholes’s
data for secondary offerings were more than 400 basis points, which allowed the underwriter to absorb significant
price impact into their fee without the price impact showing up in the immediate market.
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Invariance also explains why the square root model may appear empirically reasonable,

even if linear impact is the correct. Much of the variation in order size as a fraction of daily vol-

ume is crossectional: The fraction is low for more active stocks and high for less active stocks. To

illustrate the bias, suppose that all bets for a particular stock are the same size. Invariance im-

plies that increasing volume by a factor of 8 lowers bet size as a fraction of volume by a factor of

4 and lowers price impact by a factor of 2. Thus, a cross-sectional nonlinear regression of price

impact on bet size as a fraction of volume yields exactly the square root model of price impact.

It is statistically difficult to distinguish linear from square root price impact within stocks.

A Market Crash Scenario. Suppose both illiquid and liquid assets have annual turnover of

100% over 250 trading days. The first is a benchmark stock with P∗ = $40 per share, V ∗ = 106

shares per day, and σ∗ = 0.02 per day1/2. The second is the entire U.S. stock market, which con-

sists of both the stock index futures market and cash stock market. The market has daily dollar

volume of about P ·V = $270 billion per day, about 6750 (= 153 ·2) times the dollar volume of

the benchmark stock, and daily returns volatility σ= 0.01 per day1/2, one-half of stock volatility.

Since business times passes at a rate proportional to (P ·V ·σ/C̄ )2/3, the stock market operates

about 225 times faster (= (6,750 · 1/2)2/3) than the market for the benchmark stock, implying

H = H∗/225. If bets in the benchmark stock arrive about once every 4 minutes, bets in the

entire market arrive about once per second.

Now let us compare a bet of 25% of daily volume in the benchmark stock with a bet of 25%

of daily volume in the market as a whole. For the benchmark stock, the sale would be 250 000

shares worth $10 million. For the market as a whole, the sale would be slightly less that $70

billion. Such sales might represent the liquidation of a gigantic institutional position, similar

in magnitude to the liquidation of Jérôme Kerviel’s rogue trades in 2008, or it might represent

many small investors withdrawing equity exposure from index mutual funds or ETFs over a

short period of a few days.

The conventional wisdom predicts that the price impact of both bets would be miniscule.

Since 100% turnover per year implies daily turnover of 0.40% of market capitalization, a bet

of 25% of one day’s volume represents 0.10% of market capitalization. Unit demand elasticity

therefore imlies a price decline of 10 basis points, which the market would barely notice.

By contrast, the invariance-implied extrapolation (13) leads to very different predictions.

For the individual stock, since one percent of daily volume implies a price impact of 5 basis
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points, linear impact implies that a sale of 25% of daily volume in the benchmark stock has a

price impact of 125 basis points. The implied demand elasticity of 0.08 is far smaller than the

elasticity of one which represents conventional wisdom and is consistent with the academic

literature on the price impact of institutional bets.

The invariance-implied elasticity is much lower for a bet on the entire market, and the price

impact is correspondingly greater. Equation 13 implies that since trading activity is higher by

a factor of 153, price impact would be 15 times higher if volatility were the same. Since market

volatility of 1% per day is half of the daily volatility of 2% for the benchmark stock, price impact

is reduced by a factor of 2 from 15 to 7.5 times the price impact of 125 basis points for the in-

dividual stock. The price impact of a bet about $70 billion in the market as a whole is therefore

about 937 basis points, similar to the price declines observed when Kerviel’s trades were liqui-

dated. The implied demand elasticity for the market as a whole is only 0.01, about 7.5 times

smaller than for an individual stock and 100 times smaller than conventional wisdom.

To summarize, we do not disagree with price impact estimates for individual U.S. stocks

based on institutional trades; instead, we suggest an alternative way of extrapolating price im-

pact from individual stocks to the overall stock market.

Our calculations suggest that the overall stock market is much more fragile than most economists

believe. Sudden equity index ETF or mutual fund liquidations of $200 billion over a few days

would potentially result in a 30% crash in stock prices, matching the crash of 1987.

3 Examples of Five Market Crashes

The actual price changes during crash events reflect not only sales by particular groups of

traders placing large bets but also many other events occurring at the same time, including

arrival of news, trading by other traders, and functioning of trading infrastructure. We next

discuss each of these five episodes.

3.1 The Stock Market Crash of October 1929

The stock market crash of October 1929 is the most infamous crash in the history of the United

States. It became associated with even larger stock price declines from 1930 to 1932, bank runs,

20



and the Great Depression.6

The Dow Jones average declined by about 25% during the last week of October 1929 (from

305.85 on October 23 to 230.07 on October 29) and 34% during the last three months of 1929

(from 352.57 on September 25 to 234.07 on December 25). These price changes included a 11%

drop in the morning on Black Thursday, October 24; a 13% drop on Black Monday, October 28;

and another 12% drop on Black Tuesday, October 29.

In the late 1920s, many Americans became heavily invested in a stock market boom. A sig-

nificant portion of stock investments was made in leveraged margin accounts. Between 1926

and 1929, both the level of margin debt and the level of the Dow Jones average doubled in value.

Both the stock market boom and the boom in margin lending came to an abrupt end during the

last week of October 1929.

During the week before Black Thursday, October 24, the Dow Jones average fell 9%, includ-

ing a drop of 6% on Wednesday, October 23, and this led to a self-reinforcing cycle of liquida-

tions of stocks in margin accounts.

To quantify the margin selling which occurred during the last week of October 1929, we fol-

low the previous literature and contemporary market participants by estimating margin selling

indirectly from data on broker loans and bank loans collateralized by securities. For the last

week of October 1929, we estimate margin selling as $1.181 billion. For the three months from

September 30, 1929, to December 31, 1929, we estimate total margin selling as $4.348 billion.

Details of the estimations are presented in the Appendix C.

These liquidations exerted downward price pressure on the stock market. To estimate its

magnitude, we treat the 1929 stock market as one market, rather than numerous markets for

different stocks, and plug estimates of expected dollar volume and volatility for the entire stock

market into equation (15).

Historical volatility during the month prior to October 1929 was about 2.00% per day. His-

torical volume was $342.29 million per day in 1929 dollars. Prior to 1935, the volume reported

on the ticker did not include “odd-lot” transactions and “stopped-stock” transactions, which

have been estimated to be equal about 30% of “reported” volume (Board of Governors of the

Federal Reserve System, 1943, p. 431). We thus multiply reported volume by 13/10, obtaining

6Our analysis is based on several documents: Board of Governors of the Federal Reserve System (1929, 1927–
1931); Galbraith (1954); Senate Committee on Banking and Currency (1934); Friedman and Schwartz (1963); Smiley
and Keehn (1988); Haney (1932).
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an estimate of $444.97 million per day. The margin sales of $1.181 billion during the last week

of October were approximately 265% of average daily volume.

Equation (15) implies that margin-related sales of $1.181 billion were expected to trigger a

price decline of 46.43%:7

46.43% = 1−exp
(
− 5.00

104
·
(

444.97 ·106 ·9.42

40 ·106

)1/3

·
(

0.0200

0.02

)4/3

· 1.181 ·109

(0.01)(444.97 ·106)

)
.

As a robustness check, Table 2 reports other estimates using historical trading volume and

volatility calculated over the preceding m months, with m = 1, 2, 3, 4, 6, 12. Invariance pre-

dicts price declines ranging from 26.79% to 46.43%, only slightly larger than the actual price

change of 25%.8

Table 2: 1929 Stock Market Crash: Implied Price Impact of Margin Sales.

Months Preceding 24 October 1929

m: 1 2 3 4 6 12

ADV (in 1929-$M) 444.97 461.45 436.49 427.20 387.18 390.45
Daily Volatility 0.0200 0.0159 0.0145 0.0128 0.0119 0.0111

10/24–10/30 Sales (%ADV) 265% 256% 271% 276% 305% 302%
Price Impact 46.43% 36.26% 33.75% 29.93% 29.00% 26.79%

9/25–12/25 Sales (%ADV) 977% 942% 996% 1,018% 1,123% 1,114%
Price Impact 89.95% 80.95% 78.04% 73.01% 71.66% 68.28%

Table 2 shows the implied impact of $1.181 billion of margin sales during the week
October 24–30, 1929, and $4.343 billion of margin sales from September 25 to De-
cember 25, along with average daily 1929 dollar volume and daily volatility for
m = 1, 2, 3, 4, 6, 12 months preceding October 24, 1929. The conventional wisdom
predicts a price decline of 1.36% from October 24–29 and 4.99% from September
25 to December 25. The actual price decline was 25% from October 24–29 and 34%
from September 25 to December 25.

7To convert 1929 dollars to 2005 dollars, we use the GDP deflator which equates $1 in 1929 to $9.42 in 2005. We
use the year 2005 as a benchmark because the estimates of Kyle and Obizhaeva (2016) are based on the sample
period 2001–2005, with more observations occurring in the latter part of the sample.

8Given percentage standard errors of impact estimate of 7%, the 2-standard deviation interval is 46.43%(1±2×
%7); it is above the actually observed price decline of 25%.

22



In contrast, since the reduction of broker loans of $1.181 billion was only a very small frac-

tion of the $87.1 billion market capitalization of NYSE issues at the end of September 1929

(Brady Report, p. VIII-13), conventional intuition (1) predicts a price change of only 1.36%,

much smaller than actual price decline of 25% and about 40 times smaller than the magnitude

predicted by invariance.

We also make price impact calculations for margin sales of $4.348 billion during the last

three months of 1929. Conventional wisdom implies a price drop of 4.99%. Invariance implies

a much larger price decline ranging from 68.28% to 89.95%, more than the actual price decline

of 34% during the last three months of 1929 and the price decline of 44% from high point in late

September 1929 to low point in mid November 1929.

3.2 The Market Crash in October 1987

From Wednesday, October 14, 1987, to Tuesday, October 20, 1987, the U.S. equity market suf-

fered the most severe one-week decline in its history. The Dow Jones index dropped 32% from

2,500 to 1,700; as of noon Tuesday, October 20, the S&P 500 futures prices had dropped about

40% from 312 to 185. On Black Monday alone, October 19, 1987, the Dow Jones index fell 23%,

and the S&P 500 futures market dropped 29%.

It has long been debated whether the market crash resulted from the sales by institutions

implementing portfolio insurance. Portfolio insurance is a trading strategy that replicates put

option protection for portfolios by dynamically adjusting stock market exposure in response

to market fluctuations. Since portfolio insurers sell stocks when prices fall, the strategy ampli-

fies downward pressure on prices in falling markets. We calculate the price impact of portfolio

insurance sales implied by invariance.

We consider the entire stock market to be one market; this is consistent with the Brady Re-

port. Accordingly, we estimate daily volume as the sum of average daily volume in the futures

market and the NYSE for the previous month. Some portfolio insurers abandoned their reliance

on the futures markets and switched to selling stocks directly because futures contracts became

unusually cheap relative to the cash market. We construct a proxy for sales as the sum of portfo-

lio insurance sales in the futures market and the NYSE from tables in the Brady Report, figures

13–16, pp. 197–198, obtaining results similar to Gammill and Marsh (1988).

Over the four days October 15, 16, 19, 20, 1987, portfolio insurers sold S&P 500 futures con-
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tracts representing $10.48 billion in index futures and $3.27 billion in NYSE stocks. The gross

sales amount of $13.75 billion in futures and stocks are combined for the purpose of analyzing

price impact of portfolio insurance sales. Reported values are all 1987 dollars.

In the month prior to the crash, the historical volatility of S&P 500 futures returns was about

1.35% per day, similar to estimates in the Brady Report. The average daily volume in the S&P 500

futures market was equal to $10.37 billion. The NYSE average daily volume was $10.20 billion.

Portfolio insurance gross sales were equal to about 67% of one day’s combined volume.

Plugging portfolio insurance gross sales and market parameters into equation (15) yields a

price decline of 16.77%:9

16.77% = 1−exp
(
− 5.78

104
·
(

(10.37+10.20) ·109 ·1.54

40 ·106

)1/3

·
(

0.0135

0.02

)4/3

· (10.48+3.27)

(0.01)(10.37+10.20)

)
.

Table 3 reports other estimates based on historical trading volume and volatility calculated

over the preceding m months, with m = 1, 2, 3, 4, 6, 12. These estimates range from 11.87%

to 16.77%. For robustness, estimates under several alternative assumptions are presented in

Table 3. Details are presented in Appendix C. The similarity between predicted and observed

price declines is consistent with our hypothesis that heavy selling by portfolio insurers played a

dominant role in the crash of October 1987.

The estimates based on conventional wisdom are much smaller. According to the Brady

Report there were 2,257 issues of stocks listed on the NYSE, with a value of $2.2 trillion on De-

cember 31, 1986. Conventional wisdom implies that gross sales of $10.48 billion in futures and

$3.27 billion in individual stocks, representing 0.63% of shares outstanding in total, would have

an impact of only 0.63%. Other alternative models yield estimates not higher than 2%. Citing

similar arguments, many experts have rejected the idea that sales of portfolio insurers caused

the 1987 market crash.

Invariance-implied estimates are somewhat smaller than the price drops of 32% in the cash

equity market and 40% in the S&P 500 futures market observed during the 1987 market crash.

The price decline may have been triggered by negative news about anti-takeover legislation as

well as trade deficit statistic on October 14. It may be further aggravated by break-downs in the

market mechanism which disrupted index arbitrage relationships, as documented in the Brady

Report.

9The GDP deflator of 1.54 converts 1987 dollars to 2005 dollars.
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Table 3: 1987 Stock Market Crash: Effect of Portfolio Insurance Sales.
Months Preceding 14 October 1987

m: 1 2 3 4 6 12

S&P 500 Fut ADV (1987-$B) 10.37 11.29 11.13 10.12 10.62 9.85
NYSE ADV (1987–$B) 10.20 10.44 10.48 10.16 10.04 9.70

Daily Volatility 0.0135 0.0121 0.0107 0.0102 0.0112 0.0111

Gross Sells (% ADV) 66.84% 63.28% 63.65% 67.82% 66.53% 70.33%
Price Impact 16.77% 14.18% 12.23% 11.87% 13.20% 13.64%

Price Impact of Net Sales Combined 13.78% 11.62% 10.00% 9.71% 10.81% 11.17%
Price Impact of S&P 500 Sales 14.11% 11.67% 10.10% 10.00% 10.93% 11.45%

Price Impact of NYSE Sales 13.00% 11.18% 9.56% 9.09% 10.32% 10.53%

Table 3 shows the implied impact triggered by portfolio insurers’ net sales of
S&P 500 futures contracts ($9.51 billion) and NYSE stocks ($1.60 billion), portfolio
insurers’ gross sales of S&P 500 futures contracts ($10.48 billion) and NYSE stocks
($3.27 billion), portfolio insurers’ sales of S&P 500 futures adjusted for purchases of
index arbitrageurs ($10.48 billion minus $3.27 billion), and portfolio insurers’ sales
of NYSE stocks adjusted for sales of index arbitrageurs ($3.27 billion plus $3.27 bil-
lion) in 1987 dollars. Average daily dollar volume and daily volatility are based on m
months preceding October 14, 1987, with m = 1, 2, 3, 4, 6, 12, both for the S&P 500
futures and CRSP stocks. Conventional wisdom predicts price declines of 0.51% for
portfolio insurers’ net sells and 0.63% for their gross sells. The actual price decline
was 32% for the Dow Jones average and 40% for S&P 500 futures.

3.3 Trades of George Soros on October 22, 1987

On Thursday, October 22, 1987, just three days after the 1987 market crash, George Soros lost

$60 million in minutes by selling a large number of S&P 500 futures contracts as prices spiked

down 22% at the opening of trading. These sales have been attributed to pessimistic predictions

that Robert Prechter made based on “Elliott Wave Theory” and similarities between the 1929

crash and the 1987 crash.

The Commodity Futures Trading Commission (1988) issued a report describing the events

of October 22, 1987, without mentioning Soros by name. At 8:28 a.m. CT, approximately two

minutes before the opening bell at the NYSE, a customer of a clearing member submitted a

1,200-contract sell order at a limit price of 200, more than 20% below the previous day’s close
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of 258. Over the first minutes of trading, the price dropped to 200, at which point the sell order

was executed. At 8:34 a.m., a second identical limit order for 1,200 contracts from the same

customer was executed by the same floor broker. These transactions liquidated a long position

acquired on the previous day at a loss of about 22%, or about $60 million in 1987 dollars. Within

minutes, S&P 500 futures prices rebounded and, over the next two hours, the market recovered

to the levels of the previous day’s close. Within days, Soros’s Quantum Fund sued the brokerage

firm which handled the order, alleging a conspiracy among traders to keep prices artificially low

while his sell orders were executed.

Two other events may have exacerbated the decline in prices in the morning of October 22

by increasing the selling pressure. First, when the broker executed the second order, he mis-

takenly sold 651 more contracts than the order called for. The oversold contracts were taken

into the clearing firm’s error account and liquidated at a significant loss to the broker. Second,

the Commodity Futures Trading Commission (1988) reports that between 9:34 a.m. and 10:45

a.m. the same clearing firm also entered and filled four large sell orders for another customer—

a pension fund—with a total of 2,478 contracts sold at prices ranging from 230 to 241. These

additional orders are for almost exactly the same size as Soros’s orders. This fact suggests infor-

mation leakage or coordination regarding the size of these unusually large orders.

We compare the actual price decline of 22% with predictions based on invariance. During

the prior month, average daily volatility was 8.63%, and average daily volume in the S&P 500

futures market was $13.52 billion in 1987 dollars. The very high volatility estimate based on

crash data is reasonable because market participants expected high volatility to persist. Since

Soros’s sales started just before the opening of NYSE trading, the arbitrage mechanism which

connects stock and futures markets did not have time to work; indeed, futures contracts traded

at levels about 20% cheaper than stocks. We thus consider only S&P 500 futures market in this

example, not combining it with the market for NYSE stocks.

Each S&P 500 contract had a notional value of 500 times the S&P 500 index. With an S&P 500

level of 258, one contract represented ownership of about $129,000. Soros’ sale of 2,400 con-

tracts, or about $309.60 million, was equal to 2.29% of average daily volume. Given the prior
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month estimates, equation (15) predicts a price decline of 6.27%:10

6.27% = 1−exp
(
− 5.00

104
·
(

13.52 ·109 ·1.54

40 ·106

)1/3

·
(

0.0863

0.02

)4/3

· 309.60 ·106

(0.01)(13.52 ·109)

)
.

Table 4 presents three sets of estimates based on the historical volume and volatility of S&P 500

futures contracts calculated over the preceding m months, with m = 1, 2, 3, 4, 6, 12. Invariance

implies (A) price impact of 1.67% to 6.27% based on 2,400 contracts alone; (B) price impact of

2.12% to 7.90% adding 651 error contracts (3,051 contracts in total); and (C) price impact of

3.81% to 13.85% adding 2,478 contracts sold by the pension fund (5,529 contracts in total).

Table 4: October 22, 1987: Effect of Soros’s Trades.
Months Preceding 22 October 1987

m: 1 2 3 4 6 12

S&P 500 Fut ADV (1987-$B) 13.52 11.72 11.70 10.99 10.75 10.04
Daily Volatility 0.0863 0.0622 0.0502 0.0438 0.0365 0.0271

2,400 contracts as %ADV 2.29% 2.64% 2.65% 2.82% 2.88% 3.08%
Price Impact A 6.27% 4.50% 3.40% 2.96% 2.36% 1.67%
Price Impact B 7.90% 5.68% 4.30% 3.75% 2.99% 2.12%
Price Impact C 13.85% 10.06% 7.66% 6.69% 5.36% 3.81%

Table 4 shows the implied price impact of (A) Soros’s sell order of 2,400 contracts;
(B) Soros’s sell order of 2,400 contracts plus 651 contracts of error trades (3,051 con-
tracts in total); and (C) Soros’s sell order of 2,400 contracts, plus 651 contracts of
error trades, plus the sell order of 2,478 contracts by the pension fund (5,529 con-
tracts in total). The calculations assume average daily 1987 dollar volume and daily
volatility for m = 1, 2, 3, 4, 6, 12 months preceding October 22, 1987 for the S&P 500
futures contracts. Conventional wisdom predicts price declines of 0.01%, 0.02%,
and 0.03%, respectively. The actual price decline in the S&P 500 futures market was
22%.

The actual price decline of 22% is significantly larger than our estimate. Factors which could

have led to large impact include potentially underestimated expected volatility, front-running

based on leakage of information about the size of the order, and the peculiarly aggressive exe-

cution strategy of placing two limit orders with a limit price of 200, more than 20% below the

10The GDP deflator of 1.54 converts 1987 dollars to 2005 dollars.
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previous day’s close.

Conventional wisdom would imply minuscule price changes. Given the total value of $2.2

trillion of issues listed on the NYSE at the end of 1986, the Soros’s order, the erroneous sales,

and the sales by the pension fund would be expected to have a combined impact of only 0.03%.

3.4 Liquidation of Kerviel’s Rogue Trades in January 2008

On January 24, 2008, Société Générale issued a press release stating that the bank had “uncov-

ered an exceptional fraud.” Subsequent reports by Société Générale (2008a,b,c) revealed that

rogue trader Jérôme Kerviel had used “unauthorized” trading to place large bets on European

stock indices.

Kerviel had established long positions in equity index futures contracts with underlying val-

ues ofe50 billion: e30 billion on the Euro STOXX 50,e18 billion on DAX, ande2 billion on the

FTSE 100. He acquired these naked long positions mostly between January 2 and January 18,

then concealed them using fictitious short positions, forged documents, and emails suggest-

ing his positions were hedged. The fall in index values in the first half of January led to losses

on these secret directional bets. Internal investigators became strongly suspicious about the

nature of the positions on Friday, January 18.

Société Générale informed the heads of the central bank and the Financial Markets Author-

ity (AMF), the French stock market regulator. The AMF allowed the bank to delay public an-

nouncement of the fraud for three days, so that Kerviel’s positions could be liquidated quietly.

The head of the central bank also delayed informing the government. After liquidating the po-

sitions between Monday, January 21, and Wednesday, January 23, the bank had sustained losses

of e6.4 billion which—after subtracting out e1.5 billion profit as of December 31, 2007—were

reported as a net loss ofe4.9 billion.

As Société Générale liquidated the positions, prices fell all across Europe. The Stoxx Europe

Total Market Index (TMI)—which represents all of Western Europe—fell by 9.44% from the close

on January 18 to its lowest level on January 21. On Monday, January 21—a bank holiday with

muted U.S. financial markets activity—the Fed held an unscheduled FOMC meeting via con-

ference call at 6:00 p.m. New York time, several days before its scheduled meeting. At 8:30 a.m.

the next day, the Fed announced an unprecedented 75-basis point cut in interest rates, which

pushed all prices up and helped Société Générale to liquidate the rest of the position on better

28



terms. We do not know whether Fed officials were aware of Société Générale’s situation when

this decision was made. According to the Fed’s Minutes, published five years later, the purpose

of the meeting was to “to update the Committee on financial developments over the weekend

and to consider whether we want to take a policy action,” but there is no mention of Société

Générale. In his memoir, Bernanke (2015, pp. 195–196) said the Fed “had no idea the rogue-

trading bombshell was coming.” Yet, he mentions (p. 195) “a conference call the morning of

January 19 Paris time,” during which “senior SocGen managers in Paris and New York had told

New York Fed supervisors that the bank would report positive earnings for the fourth quarter,

even after taking write-downs on its subprime mortgage exposure.”

On the one hand, the surprise early announcement of an interest rate cut could have helped

the bank obtain more favorable execution prices on some portion of its trades. On the other

hand, January 21 was a bank holiday in the United States; in the previous year, the futures mar-

kets had only one third of the typical volume on days when U.S. markets were closed. Low

volume on the bank holiday could have reduced liquidity, making the unwinding of positions

more expensive.

Due to significant correlations among European markets, we perform our analysis under the

assumption that all European stock and futures markets are one market. Based on data from the

World Federation of Exchanges, the seven largest European exchanges by market capitalization

in 2008 (NYSE Euronext, London Stock Exchange, Deutsche Börse, BME Spanish Exchanges,

SIX Swiss Exchange, NASDAQ OMX Nordic Exchange, Borsa Italiana) had average daily volume

for the month ending January 18, 2008 equal toe69.51 billion.

We also sum average daily volume across the ten most actively traded European equity index

futures markets (Euro Stoxx 50, DAX, CAC, IBEX, AEX, Swiss Market Index SMI, FTSE MIB, OMX

Stockholm 30, Stoxx 50 Euro) and find average daily futures volume ofe110.98 billion. The total

daily volume in both European stock and equity futures markets was equal toe180.49.

Our estimate of expected volatility is 1.10%, the previous month’s daily standard deviation

of returns for the Stoxx Europe Total Market Index (TMI).

According to equation (15), the liquidation of Kerviel’se50 billion position—equal to about

27.70% of the average daily volume in aggregated stock and futures markets—is expected to

trigger a price decline of 10.79% across European markets:

10.79% = 1−exp
(
− 5.00

104
·
(

180.49 ·1.4690 ·0.92 ·109

40 ·106

)1/3 (
0.0011

0.02

)4/3 50

(0.01) ·180.49

)
.
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In this equation, we use an exchange rate of $1.4690 per Euro to convert Euro volume into U.S.

dollar volume and convert 2008 dollars into 2005 dollars to be able to use them in our calibrated

formulas.11

Table 5 shows the estimates of price impact based on historical trading volume and volatility

calculated over the preceding m months, with m = 1, 2, 3, 4, 6, 12. Invariance predicts price

changes ranging from 10.59% to 12.93%. The Stoxx TMI index actually fell by 9.44% from the

market close of 316.73 on January 18 to its lowest level of 286.82 on January 21.

Table 5: January 2008: Effect of Liquidating Kerviel’s Positions.

Months Preceding January 18, 2008

m: 1 2 3 4 6 12

Stk Mkt ADV (2008–eB) 69.51 66.51 67.37 67.01 66.73 66.32
Fut Mkt ADV (2008–eB) 110.98 114.39 118.05 117.46 127.17 121.26

Daily Volatility 0.0110 0.0125 0.0121 0.0117 0.0132 0.0111

Order as %ADV 27.70% 27.64% 26.97% 27.11% 25.79% 26.66%
Price Impact 10.79% 12.66% 11.94% 11.53% 12.93% 10.59%

Total Losses (2008–eB) 2.77 3.27 3.08 2.97 3.34 2.72
Losses: Adj A (2008–eB) 5.08 5.58 5.39 5.28 5.65 5.03
Losses: Adj B (2008–eB) 7.39 7.89 7.70 7.59 7.96 7.34

Table 5 shows the predicted losses of liquidating Kerviel’s positions of e50 billion
under the assumption that the major European cash and futures markets are inte-
grated, and one Euro is worth $1.4690. Results are provided based on average daily
volume of the major European stock exchanges and index futures as well as daily
volatilities of Stoxx Europe TMI, based on m months preceding January 18, 2008,
with m = 1, 2, 3, 4, 6, 12. Conventional wisdom predicts price decline of 0.43%. The
actual price decline in the Stoxx Europe TMI was 9.44%.

In contrast, conventional wisdom predicts that sales of e50 billion would have a much

smaller price impact of 0.43%, given that it represents less than one percent of the total capital-

ization of European markets, which was about e11.752 trillion in December 2007, as reported

by Federation of European Securities Exchanges.

We also estimate the dollar costs of liquidating the rogue position to range from e2.72 bil-

11The GDP deflator of 0.92 converts 2008 dollars into 2005 dollars.
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lion toe3.34 billion under different assumptions about expected volume and volatility. Adding

mark-to-market losses sustained prior to liquidation leads to estimated losses ranging from

e5.03 billion to e7.96 billion. These estimates are consistent with officially reported losses of

e6.30 billion. Appendix C presents the details.

In explaining the costs of liquidating the positions to shareholders already concerned about

the bank’s losses on subprime mortgages, bank officials blamed “the very unfavorable market

conditions” (see the explanatory note about the exceptional fraud released by Société Générale

on January 27). Expressing conventional wisdom, the bank announced that its trades accounted

for not more than 8% of turnover on any one of the futures exchanges on which they were con-

ducted and thus did not have a serious market impact. When examined through the lens of in-

variance, the reported losses are of the magnitude expected from the price impact of the trades

on European stock markets.

3.5 The Flash Crash of May 6, 2010

During the morning of May 6, the S&P 500 declined by 3%. Rumors of a default by Greece had

made markets nervous in a context where there was already uncertainty about elections in the

U.K. and an upcoming jobs report in the U.S.

During the five minute interval from 2:40 p.m. to 2:45 p.m. ET, the E-mini S&P 500 futures

contract suddenly dropped 5.12% from 1,113 to 1,056. After a pre-programmed circuit breaker

built into the CME’s Globex electronic trading platform halted trading for five seconds, prices

went up 5% over the next ten minutes, recovering losses.

After the Flash crash, the Staffs of the CFTC and SEC (2010a,b) issued a joint report. It said

that an automated execution algorithm sold 75,000 S&P 500 E-mini futures contracts between

2:32 p.m. and 2:51 p.m. on the CME’s Globex platform, exactly during the V-shaped flash crash.

The E-mini contract represents exposure of 50 times the S&P 500 index, one tenth the multiple

of 500 for the older but otherwise similar contract sold by portfolio insurers in 1987. Given the

S&P 500 index values, the program sold S&P 500 exposure of $4.37 billion. The joint report did

not mention the name of the seller, but journalists identified the seller as Waddell & Reed.

Many people did not believe that selling 75,000 contracts could have triggered a price de-

cline of 5%, because they implicitly relied on conventional intuition: The $4.37-billion sale rep-

resented only 3.75% of the daily volume of about 2,000,000 contracts per day in the S&P 500
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E-mini futures market. Thus, many accused high frequency traders of failing to provide liquid-

ity as prices collapsed.

We examine whether such an order could have resulted in a flash crash. During the preced-

ing month, the volume in E-mini contracts was about $132 billion per day, and the volume in

the stock market was about $161 billion per day; the combined daily volume was $292 billion.

The historical daily volatility was 1.07%.

Equation (15) implies that the sales of $4.37 billion—equal to about 3.31% of daily volume

in S&P 500 E-mini futures market in the previous month or 1.49% for futures and stock market

combined—is expected to trigger a price decline of 0.61%:12

0.61% = 1−exp
(
− 5.00

104
·
(

(132+161) ·0.90 ·109

40 ·106

)1/3

·
(

0.0107

0.02

)4/3

· 75,000 ·50 ·1,164

0.01 · (132+161) ·109

)
.

Table 6 shows estimates based on historical volume and volatility of S&P 500 E-mini futures

contracts calculated over the preceding m months, with m = 1,2,3,4,6,12. These estimates

range from 0.44% to 0.73%. Appendix C provides estimates under the alternative assumptions

of two-percent volatility and less integrated markets. These estimates tend to be higher, ranging

from 0.76% to 2.91%.

The predicted price impact of 0.61% is smaller than the actual decline of 5.12%. As discussed

later, unusually fast execution may have significantly increased the temporary impact of these

trades and led to rapid rebound in prices afterwards. Given that the capitalization of U.S. mar-

ket was about $15.077 trillion at the end of 2009, conventional wisdom would predict an even

smaller price decline of 0.03%.

4 Policy Implications and Lessons Learned

Application of microstructure invariance concepts to intrinsically infrequent historical episodes

requires an exercise in judgement to extract appropriate lessons learned. In some cases theory

implies values that differ from actual price declines. We discuss next factors that can potentially

explain these discrepancies. While speculative in nature, our discussion suggests important

lessons for policymakers concerned with measuring and predicting crash events of a systemic

nature, for asset managers worried about managing market impact costs associated with exe-

12The GDP deflator of 0.90 converts 2010 dollars into 2005 dollars.
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Table 6: Flash Crash of May 6, 2010: Effect of 75,000 Contract Futures Sale.

Months Preceding 6 May 2010

m: 1 2 3 4 6 12

S&P 500 Fut ADV (2010 $B) 132.00 107.49 109.54 112.67 100.65 95.49
Stk Mkt ADV (2010 $B) 161.41 146.50 142.09 143.03 132.58 129.30

Daily Volatility 0.0107 0.0085 0.0078 0.0090 0.0089 0.0108

Order as %ADV 1.49% 1.72% 1.73% 1.71% 1.87% 1.94%
Price Impact (hist σ) 0.61% 0.49% 0.44% 0.53% 0.55% 0.73%

Price Impact (σ= 2%) 1.39% 1.52% 1.53% 1.52% 1.61% 1.65%

Table 6 shows the predicted price impact of sales of 75,000 S&P 500 E-mini fu-
tures contracts. Calculations are based on average daily volume and volatility of the
S&P 500 E-mini futures for the m months preceding January 18, 2008, with m = 1, 2,
3, 4, 6, 12. Conventional wisdom predicts a price decline of 0.03%. The actual price
decline in the S&P 500 E-mini futures market was 5.12%.

cution of large trades that might potentially disrupt markets, and for researchers interested in

understanding of how financial markets work.

Price Impact is Large in Liquid Markets. Market participants often execute large orders by

restricting quantities traded to be not more than five or ten percent of average daily volume

over a period of several days. This heuristic strategy is believed to be reasonable for individual

stocks and thus certainly for more liquid markets such as markets for stock index futures.

We disagree. While this strategy is reasonable for trading in individual stocks, our analysis

shows that it may incur much larger-than-expected costs when implemented in more liquid

markets. The price impact of trading a given fraction of daily volume (in volatility units) is pro-

portional to the cube root of dollar volume and returns volatility. For example, if dollar volume

P ·V increases by a factor of 1000—approximately consistent with difference between a bench-

mark stock and stock index futures—market impact of a given fraction of volume increases by

a factor of (1000)1/3 = 10 in equation (15). The larger estimates stem from assumptions that

invariance hypothesis holds and impact is linear in bet size.
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Rapid Execution Magnifies Transitory Price Impact. Our analysis shed some light on how

price dynamics in response to large bets depends on the speed of execution. While the long-

term impact of bets is likely to depend on their information content, the short-term price dy-

namics is probably affected by the speed of trading.13 Speeding up execution exacerbates tem-

porary impact associated with V-shaped price paths, in which prices first sharply plunge and

then rapidly recover.

The model of smooth trading of Kyle, Obizhaeva and Wang (2014) provides a theoretical

framework for modeling short-term price reactions to unusually rapid execution of large bets.14

The model implies that markets interpret extremely rapid, heavy selling as an indication that

extremely negative information is about to flow into the market. Prices collapse immediately

when a heavy rate of selling is detected. When the expected negative information does not

materialize, prices rebound, even though much of the heavy selling continues.

The impact formula (15) contains parameters calibrated using the data on portfolio tran-

sition orders. Most transitions were executed over a period of a few days, and only the most

complex of them were carried out over a period of a few weeks. Their executions at a prudent

pace were designed to keep impact costs low. Extrapolating estimates from portfolio transi-

tions to sales during crashes implicitly makes the identifying assumption that crash were also

executed at the same “natural” pace.

Yet, during 1987 and 2010 flash crashes, larger-than-predicted price declines followed by

rapid price recoveries suggest that transitory price impact may have been exacerbated by the

extremely rapid rate at which selling took place. According to the Staffs of the CFTC and SEC

(2010b), for example, the May 2010 flash crash order was executed extremely rapidly in just 20

minutes, while earlier two orders of similar magnitudes had been executed over periods of 5

and 6 hours, which is 15 times slower.15

13Financial crises eventually followed the crash events of 1929 and liquidation of Kerviel’s rogue trades in 2008.
Whether margin sales in 1929 or Kerviel’s trades in 2008 had information content is a difficult question to frame
in a meaningful manner. For example, perhaps Kerviel traded against informed traders who correctly foresaw the
impending financial crisis, delaying the incorporation of this information into prices until his own trades were
liquidated.

14The model of smooth trading gives rise in the equilibrium to both endogenous permanent and temporary
impacts, λ and κ. In most of traditional models such as Kyle (1985), price impact is permanent and transaction
costs of an informed trader do not depend on the speed of trading as long as he trades continuously.

15The smooth trading model implies temporary price impact is linear in the speed of trading. Since selling dur-
ing the flash crash occurred about 15 times faster than normal order execution, the model implies transitory price
impact to be 15 times greater than in the case when selling occurs at a “normal” rate, followed by a reversal. Mul-

34



Policy Responses to Mitigate Crashes. Some policy responses may help to mitigate negative

effects of crashes. These policies have to aim at easing flow of credit as well as providing funds

that will make up the gap in demand and supply. Our analysis suggests that the amount of funds

necessary to counteract the shock must be comparable to the size of the shock itself.

A good example is the 1929 market crash, during which price declines were somewhat smaller

than predicted by invariance and the crash was well contained until the end of 1929. First, im-

mediately after the initial stock market break on Black Thursday, a group of prominent New

York bankers put together an informal fund of about $750 million to buy securities—similar in

size to the margin sales shock of about $1.181 billion—in order to support prices. When their

decisions were publicized, the sense of panic subsided. Similar actions, for example, were un-

dertaken by J.P. Morgan and other bankers after a crash in 1907.

Second, the New York Fed acted prudently in 1929 as well. In the 1920s, bankers and their

regulators were aware that if non-bank lenders suddenly withdrew funds from the broker loan

market, there would be pressure on the banking system to make up the difference. By discour-

aging banks from lending into the broker loan market prior to the 1929 crash, the New York Fed

increased the ability of banks to support it after the stock market crashed. During the last week

of October 1929, the New York Fed wisely reversed its course and encouraged banks to provide

bank loans on securities to their clients as a substitute for broker loans. The unprecedented

increase in demand deposits at New York banks gave them plenty of cash to use to finance

increased loans on securities. The New York Fed also encouraged easy credit by purchasing

government securities and cutting its discount rate twice. Some brokers cut margins from 40%

to 20%.

All of these stabilizing policies smoothed the margin selling out and allowed brokers to liq-

uidate the large positions of under-margined stock investors gradually over five weeks, rather

than selling collateral off at fire-sale prices over several days. This appears to have helped the

market to digest imbalances and reduce temporary price impact, thus avoiding a sudden, brutal

bursting of the stock market bubble.

Effect of Large Bets May Propagate Across Integrated Markets. Financial markets are inte-

grated. Our study suggests that heavy selling in one market is likely to affect correlated markets.

This connectedness raises the question of how to define the boundaries of the market for the

tiplied by 15, our estimates of 0.61% price decline becomes even larger than the actual decline of 5.12%.
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purpose of applying invariance.

For example, during the 1987 crash, not only U.S. markets but also many major world mar-

kets experienced severe declines, despite the fact that the portfolio insurance selling was con-

fined to the former. According to Roll (1988), this justifies his opinion that portfolio insurance

did not trigger the 1987 crash. The common patterns across markets were also documented

during liquidation of Kerviel’s positions in January 2008. Even markets where Société Générale

did not liquidate positions had very similar performance. The bank thus argued that its own

impact on prices was limited, and large price declines in multiple markets had to be attributed

to other factors.

We disagree. The commonality of patterns suggests that market impact estimates should

take into account how market liquidity is shared across markets in different continents and

markets of economically related securities. It supports our preferred strategy for the analysis of

the 1987 crash of looking at aggregated stock and futures markets. It also supports our analysis

of Société Générale’s case where we aggregate data across all European markets rather than

focus only on isolated pools of liquidity for countries where the bank liquidated its position.

Efficiency versus Stability. There may be a trade-off between efficiency and stability. In less

efficient trading arrangements, more capital is required to sustain orderly trading, but this cap-

ital also makes the systems more stable during volatile times. Invariance may help to assess the

affect of market integration on liquidity.

The inefficiency of financial markets in 1920s may explain their remarkable resilience. Dur-

ing the 1929 crash, the gigantic amount of selling related to liquidation of margin loans was

more than 15 times greater than selling during the 1987 crash, as a percentage of GDP. Yet, the

price decline was only half as large.16

In the 1920s, speculative capital may have been compartmentalized into numerous sepa-

rate silos. Speculative trading and intermediation associated with underwriting of new stock

issues often took place in “pools.” The pools were typically dedicated to trading only one stock,

and investors in the pools often had close connections to the company whose stock the pool

16The 1987 portfolio insurance trades of $13 billion were equal to only about 0.28% of GDP in that year (1987 GDP
was $4.7 trillion); stock prices fell 32%. During the last week of October 1929, the margin related sales of $1.181
billion were equal to about 1% of GDP (1929 GDP was $104 billion), approximately four times the levels of the 1987
crash; yet stock prices fell by only 25%. Inclusion of additional sales equal to about 3% of GDP in subsequent weeks
makes margin selling in 1929 to be more than 15 times greater than selling during the 1987 crash, as a percentage
of GDP.
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traded; there were no prohibitions against insider trading and no SEC requiring firms to dis-

close material information to the market. These pools traded actively, used leverage, took short

positions, and arbitraged stocks against options, particularly when facilitating distribution of

newly issued equity. There were no futures markets or ETFs allowing investors to trade large

baskets of stocks. When faced with massive liquidations of margin loans, the market may have

more speculative capital available to stabilize the situation than in a more “efficiently” lever-

aged system in which institutional investors can spread their capital across markets by trading

hundreds of stocks simultaneously.

Invariance-implied estimates would change significantly if instead of being considered as

one large market, the stock market in 1929 were thought of as a set of many small, isolated,

and thus less liquid markets for individual stocks. One would expect market impact to be much

smaller in these less liquid markets for the same market bet. As a hypothetical illustration,

suppose the 1929 stock market consisted of 125 separate markets for 125 different stocks, and

assume all of them were of the same size and turnover. Comparing to one large integrated

market, 125 small markets would absorb the same shock 1252/3 = 25 times more slowly and its

impact would be 1251/3 = 5 times smaller, as implied by equations (9) and (15).

Early Warning Systems May Be Useful and Practical. Some strategies are inherently desta-

bilizing. They have built-in features of negative feedbacks: as prices go down, more selling is

required and this pushes prices further down. The more capital is invested into these strate-

gies, the bigger is their potential destabilizing effects on prices. Equipped with quantitative

invariance formulas for market impact, one may detect instances when destabilizing strategies

become so large that they may put financial markets at risk.

Tuzun (2012) uses invariance to assess the effect of leveraged ETFs on markets. He finds

that short ETFs and leveraged long ETFs in financial stocks were close to the tipping point in

2008 and 2009. A price decline of 1% would induce leveraged ETFs to sell about $1 billion;

invariance implies that this imbalance would lead to a further price decline of another 1% and

thus potentially trigger a downward spiral.

For some of five crash events in our paper, policymakers or stock market participants also

had in hand the information required to quantify the price impact and foresee the systemic

risks looming from sudden liquidations of large stock market exposures. Yet, they mistakenly

trusted in conventional intuition when assessing potential magnitudes of price declines.
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Contrary to the beliefs of some, the market crashes in 1929 and 1987 were not completely

unexpected. In both cases, data was publicly available before the events. Data on broker loans

was published by the Federal Reserve System and the NYSE before the 1929 crash. Estimates of

assets under management by portfolio insurers were available before the 1987 crash.

In both cases, the potential price impact of liquidations was a topic of public discussion

among policy makers and market participants. In the months prior to the 1929 stock mar-

ket crash, brokers were raising margin requirements to protect themselves from a widely dis-

cussed collapse in prices which might be induced by rapid unwinding of stock investments

financed with margin loans. Market participants watched statistics on broker loans carefully,

noting the tendency for total lending in the broker loan market to increase as the stock market

rose. Markets were aware that margin account investors were buyers with “weak hands,” likely

to be flushed out of their positions by margin calls if prices fell significantly. Discussions about

who would buy stocks if a collapse in stock prices forced margin account investors out of their

positions resembled similar discussions in 1987 concerning who would take the opposite side

of portfolio insurance trades.

The debate about the extent to which portfolio insurance contributed to the 1987 crash

started long before the crash itself. On the day the 1987 crash occurred, academics were holding

a conference on a topic of potential “market meltdown” induced by portfolio insurance sales.

The term “market meltdown,” popularized by then NYSE chairman John Phelan, was used in the

year or so before the stock market crash to describe a scenario of cascading portfolio insurers’

sell orders resulting in severe price declines and posing systemic risks to the economy. Months

before the 1987 crash itself, the SEC’s Division of Market Regulation (1987)—responding to wor-

ries that portfolio insurance have made the market fragile—published a study describing in

some detail a potential meltdown scenario induced by portfolio insurance sales, which closely

resembled the subsequent crash in October 1987. Yet, the study dismissed the risk of such an

event as a remote possibility, in agreement with conventional wisdom at the time.

Many market participants were firmly convinced that, given the substantial trading volume

in the U.S. equity markets—and especially the index futures market—there was enough liquid-

ity available to accommodate sales of portfolio insurers without any major downward adjust-

ment in stock prices. During hearings before the House Committee on Energy and Commerce

(1987) on July 23 prior to the 1987 crash, Hayne E. Leland defended portfolio insurance:

“We indicated that average trading will amount to less than 2% of total stocks and
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derivatives trading. On some days, however, portfolio insurance trades may be a

greater fraction. . . . In the event of a major one-day fall (e.g., 100 points on the Dow

Jones Industrial Average), required portfolio insurance trades could amount to $4

billion. Almost surely this would be spread over 2–3 day period. In such a circum-

stance, portfolio insurance trades might approximate 9–12% of futures trading, and

3–4% of stock plus derivatives trading.”

If regulators had applied simple principles of invariance prior to the crash, they would have

been alarmed by Hayne Leland’s projection of potential sales of 4% of stock-plus-futures vol-

ume over three days in response to a decline in stock prices of about 4% (i.e., 100 points on the

Dow Jones average). They would see that the stock market was already close to a tipping point.

Historical volume and volatility in July 1987 implied that sales of $4 billion in response to a 4%

price decline would lead to another drop in prices, just slightly smaller than 4%. Absent sta-

bilizing trades by investors trading in an opposite direction, potential portfolio insurance sales

were already on the verge of triggering precisely the cascade meltdown scenario.

5 Conclusion

Crash-like events continue to occur. The Staffs of the Fed, the CFTC, and SEC (2015) describe

the “flash rally” in the U.S. Treasury market on October 15, 2014, during which prices rose

rapidly for several minutes and then fell back down. Since the report was not based on au-

dit trail data identifying individual traders, it does not rule out the possibility that the flash

rally resulted from rapid buying by one trader. Obizhaeva (2016) describes how the sharp V-

shaped devaluation of Russian currency on December 16, 2014, was likely caused by a large

multi-billion-dollar bet. The collapse of the Chinese stock market in the summer of 2015 was

likely caused by liquidations of margin accounts, as discussed in Bian et al. (2018); this crash

was in many ways similar to the crash of 1929 in the U.S. market; in both cases extraordinary

steps were taken to stabilize the markets.

Our study of five case studies should not be interpreted as a regression with five data points.

Instead, we think that examining these episodes leads to useful insights about why stock market

crashes happen, how to prevent them if possible, and how to respond to them if not.
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Appendix A: Implementation Issues.

In order to apply microstructure invariance to data on the five crash events, several implemen-

tation issues need to be addressed.

First, the volume and volatility inputs in our formulas should not be thought of as param-

eters of narrowly defined markets of a particular security in which a bet is placed but rather

as parameters based on the market as a whole. Securities and futures contracts may share the

same fundamentals and have a common factor structure. When a large order moves prices in

the S&P 500 futures market, index arbitragers usually insure that prices for the underlying bas-

ket of stocks move by about the same amount as well. It is difficult to identify the boundaries

of the market. Consistent with the spirit of the Brady Report, we take the admittedly simplified

approach of adding together cash and futures volume for three of the four crash events in which

stock index futures markets existed. In our analysis of the Soros trades, we ignore cash market

volume because his trades were executed so quickly that price pressure in the futures market

was not transferred to cash markets.

Second, the spirit of the invariance hypothesis is that volume and volatility inputs into the

market impact equation (15) are market expectations prevailing before the bet is placed. Ex-

pected volume and expected volatility determine the sizes of bets investors are willing to make

and the market depth intermediaries are willing to provide. Different price impact estimates

are possible, depending on whether volatility estimates are based on implied volatilities before

the crash, implied volatilities during the crash, historical volatilities based on the crash period

itself, or historical volatilities based on months of data before the crash. For robustness, we

present results based on historical data for different windows prior to the crash event.

Third, it is likely that the price impact of an order is related to the speed with which it is

executed. The market impact model (15) assumes that orders are executed at a “normal” speed

in the relevant units of business time. For example, a very large order in a small stock may

be executed over several weeks or even months, while a large order in the stock index futures

market may be executed over several hours. The impact model leaves open the possibility that

unusually rapid execution of very large orders may increase their temporary price impact, but

these effects are hard to quantify properly. We discuss this issue further in Section 4.

Fourth, there have been numerous changes in market mechanisms between 1929 and 2010,

including better communications technologies, introduction of electronic handling of orders,
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a reduction in tick size, and the migration of trading volume from face-to-face trading floors

to anonymous electronic platforms. Such changes may have lowered bid-ask spreads, but we

believe—in the spirit of Black (1971)—that they have had little effect on market depth, which

largely dominates the price impact of large bets. We thus apply estimates of market depth based

on portfolio transitions during 2001–2005 to the entire period 1929–2010.

Fifth, Kyle and Obizhaeva (2016) calibrate both linear and square-root impact models con-

sistent with invariance. From an empirical perspective, the square root specification explains

price impact somewhat better than the linear model, as consistent with the empirical econo-

physics literature (Bouchaud, Farmer and Lillo, 2009). Yet, the linear model explains the price

impact of the largest one percent of bets in the most active stocks slightly better than the square

root model. Crash events are explained by applying invariance to a linear model. To make this

point, “invariance” implicitly assumes a linear impact function in the main part of the paper.

Due to its concavity, the square root model predicts much smaller price declines during crash

events. Appendix C presents these estimates along with estimates based on alternative models.

Appendix B: Estimates for Different Market Impact Models.

We compute estimates of predicted price changes based on several alternative models of market

impact. Market impact is expected to depend on market characteristics such as market capital-

ization N , daily share volume V , returns volatility σ, and the corresponding GDP deflator dgdp;

unsigned bet size Q; and perhaps the time horizon T over which the bet is executed.

We consider several specifications when calculating the implied magnitudes of simple (non-

logged) market impacts ∆P/P :

• The invariance-implied linear model (“Inv-LIN”), discussed in Kyle and Obizhaeva (2016):

∆P

P
= 2 ·2.50

104
·
(

P ·V ·dgdp

40 ·106

)1/3

·
( σ

0.02

)4/3
· Q

(0.01) ·V . (16)

• The invariance-implied square-root model (“Inv-SQRT”), discussed in Kyle and Obizhaeva

(2016):
∆P

P
= 2 ·12.08

104
·
( σ

0.02

)
·
(

Q

(0.01) ·V
)1/2

. (17)
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• The conventional model (“Conv-N”), based on market capitalization:

∆P

P
= Q

N
. (18)

• The conventional model (“Conv-V”), based on daily volume:

∆P

P
= Q

250 ·V . (19)

• The Barra model, discussed in Torre and Ferrari (1999) and Grinold and Kahn (1995):

∆P

P
=σ ·

(
Q

V

)1/2

. (20)

• Almgren–Chriss model (“AC”), discussed in Almgren et al. (2005):

∆P

P
= 0.314 ·σ · Q

V
·
(

N

V

)1/4

+2 ·0.142 ·σ ·
(

Q

V ·T

)3/5

. (21)

• Frazzini–Israel–Moskowitz model (“FIM”), discussed in Frazzini, Israel and Moskowitz

(2018) in Table VII, column (9):

∆P

P
=

(
−0.2 · ln(1+N ·10−9 ·dgdp)+0.35 · Q

0.01 ·V +9.32 ·
(

Q

0.01 ·V
)1/2

+0.13 ·σ ·p252 ·100

)
· 2

104
.

(22)

In the last two models, the estimates are multiplied by a factor of 2 to convert transaction costs

estimates to price impact estimates.

The Almgren–Chriss model (21) explicitly depends on the execution horizon T . For the 1929

crash, we assume selling occurred over five days (T = 5). For the 1987 crash, we assume selling

occurred over four days (T = 4). For Soros’ trades, we assume selling occurred over 6 minutes

from 8:28 a.m. to 8:34 a.m. (T = 6/420). For the liquidation of Kerviel’s trades, we assume selling

occurred over three days (T = 3). For the flash crash of 2008, we assume selling occurred over

about twenty minutes, or 1/20 of a day (T = 1/20).

Panel A of Table 7 presents impact estimates based on six impact models for percentage

market impact along with actual price declines for the five crashes. First, all estimates are much
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Table 7: Alternative Models.
Panel A: Simple percentage impact ∆P/P.

Actual Inv-LIN Inv-SQRT Conv-N Conv-V Barra AC FIM

1929 Market Crash 25.00% 62.56% 3.94% 1.36% 1.06% 3.26% 6.62% 4.95%
1987 Market Crash 32.00% 18.31% 1.33% 0.63% 0.27% 1.10% 1.04% 2.02%
1987 Soros’s Trades 22.00% 6.47% 1.58% 0.01% 0.01% 1.31% 3.47% 0.62%

2008 SocGén Trades 9.44% 11.40% 0.70% 0.43% 0.11% 0.58% 0.35% 1.18%
2010 Flash Crash 5.12% 0.61% 0.16% 0.03% 0.01% 0.13% 0.16% 0.24%

Panel B: Log-percentage impact ∆ lnP.

Actual Inv-LIN Inv-SQRT Conv-N Conv-V Barra AC FIM

1929 Market Crash 25.00% 46.43% 3.86% 1.36% 1.06% 3.21% 6.41% 4.83%
1987 Market Crash 32.00% 16.77% 1.32% 0.63% 0.27% 1.10% 1.04% 1.99%
1987 Soros’s Trades 22.00% 6.27% 1.57% 0.01% 0.01% 1.30% 3.41% 0.62%

2008 SocGén Trades 9.44% 10.79% 0.70% 0.43% 0.11% 0.58% 0.35% 1.17%
2010 Flash Crash 5.12% 0.61% 0.16% 0.03% 0.01% 0.13% 0.16% 0.24%

Table 7 presents actual price declines along with price declines implied by several models for
five market crashes. Panel A shows the estimates for models with simple returns ∆P/P , and
panel B shows the estimates for models with log returns ∆ lnP .

lower than actual price declines, except for the Inv-LIN estimates. Second, the Conv-N and

Conv-V estimates based on the conventional intuition usually generate the smallest estimates

among models. Third, calibrated on the sample of institutional transactions, the Barra, AC, and

FIM estimates are all similar in magnitude; they are slightly larger than conventional estimates

but still much lower than the actual price declines. Fourth, the AC estimate is significantly larger

than other alternative estimates for the Soros bet because this estimate explicitly accounts for

the very short execution horizon of this bet.

For all five crashes, the Inv-SQRT estimates are quantitatively similar to the Barra estimates.

Due to its concavity, the square root models predict much smaller price declines than the lin-

ear model. Thus, invariance alone does not explain magnitudes of price declines during crash

events; instead, crash events are explained by applying invariance to a linear model.

Panel B of Table 7 presents impact estimates based on six impact models for log-percentage
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market impact ∆ lnP along with actual price declines for the five crashes. These estimates are

obtained from models (16)–(22), where ∆P/P on the left-hand side of these equations is re-

placed with ∆ lnP . The invariance-implied linear model (Inv-LIN) and the conventional model

based on market capitalization (Conv-N) for log-impact are the two models discussed on detail

in the main part of our paper.

The estimates based on log-returns are smaller than the estimates based on simple returns,

but this difference is negligible for most models. The only exception is the Inv-LIN model, for

which large estimates based on the simple return are reduced when log-returns are used in-

stead; the biggest difference is observed for the 1929 crash, for which the simple-return model

implies price decline of 63% and the log-return model implies price decline of only 46%.

Appendix C: Estimation Details.

Estimation Details for the Crash of 1929

A significant portion of stock investments in the late 1920s was made in leveraged margin ac-

counts. To finance their leveraged purchases of stocks, individuals and non-financial corpo-

rations relied either on bank loans collateralized by securities or on margin account loans at

brokerage firms. When investors borrowed through margin accounts at brokerage firms, the

brokerage firms financed only a modest portion of the loans with credit balances from other

customers. To finance the rest, brokerage firms pooled securities pledged as collateral by cus-

tomers under the name of the brokerage firm (in “street name”) and then re-hypothecated these

pools by using them as collateral for broker loans. The broker loan market of the late 1920s re-

sembled the shadow banking system of the early 2000s in its lack of regulation, perceived safety,

and the large fraction of overnight or very short maturity loans.

The broker loan market was controversial during the 1920s, just as the shadow banking sys-

tem was controversial during the period surrounding the financial crisis of 2008–2009. Some

thought the broker loan market should be tightly controlled to limit speculative trading in the

stock market on the grounds that lending to finance stock market speculation diverted capi-

tal away from more productive uses in the real economy. Others thought it was impractical

to control lending in the market because the shadow bank lenders would find ways around re-

strictions and lend money anyway. The New York Fed chose to discourage New York banks from
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lending money against stock market collateral. As a result, loans to brokers by New York banks

declined after reaching a peak in 1927.

Attracted by the high interest rates on broker loans—typically 300 basis points or more

higher than loans on otherwise similar money market instruments—non-New York banks and

non-bank lenders continued to supply capital to the broker loan market. Many of these loans

were arranged by the New York banks; sometimes, non-bank lenders bypassed the banking sys-

tem entirely, making loans directly to brokerage firms.

Investment trusts (similar to closed end mutual funds) placed a large fraction of the newly

raised equity into the broker loan market rather than buying expensive common stocks. Corpo-

rations, flush with cash from growing earnings and proceeds of securities issuance, invested a

large portion of these funds in the broker loan market rather than in new plant and equipment.

To quantify the margin selling which occurred during the last week of October 1929, we fol-

low the previous literature and contemporary market participants by estimating margin selling

indirectly from data on broker loans and bank loans collateralized by securities.

In the 1920s, data on broker loans came from two sources. First, the Fed collected weekly

broker loan data from reporting member banks in New York City supplying the funds or arrang-

ing loans for others. Second, the New York Stock Exchange collected monthly broker loan data

based on demand for loans by NYSE member firms. The broker loan data reported by the New

York Stock Exchange include broker loans which non-banks made directly to brokerage firms

without using banks as intermediaries; such loans bypassed the Fed’s reporting system. Since

loans unreported to the Fed fluctuated significantly around the 1929 stock market crash, we

rely relatively heavily on the NYSE numbers in our analysis below but also pay careful attention

to the weekly dynamics of the Fed series for measuring selling pressure during the last week of

October 1929.

We calculate weekly proxies for margin sales as follows. (1) We difference the weekly Fed

series to construct weekly changes. (2) We interpolate the monthly NYSE series to construct

a weekly series by assuming that these loans changed at a constant rate within each month,

except for October 1929. For October 1929, the Fed series shows little change, except for the last

week, and we therefore assume that the entire monthly change in the NYSE series represents

unreported changes in broker loans which occurred during the last week of October 1929. (3)

Finally, we add changes in bank loans collateralized by securities to take into account the fact

that some changes in broker loans do not represent margin sales because they were converted
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into bank loans collateralized by securities. The last adjustment also has a significant effect

because there was an unprecedented increase in banks loans collateralized by securities during

the last week of October 1929, followed by offsetting reductions during November.

Figure 2 shows the weekly levels of the Fed’s broker loan series and the monthly levels of the

NYSE broker loan series. Two versions of each series are plotted, one with bank loans collat-

eralized by securities added and one without (“Fed Broker Loans,” “Fed Broker Loans + Bank

Loans,” “NYSE Broker Loans,” “NYSE Broker Loans + Bank Loans”). The figure also shows the

level of the Dow Jones Industrial Average from 1926 to 1930. The time series on both broker

loans and stock prices follow similar patterns, rising steadily from 1926 to October 1929 and

then suddenly collapsing. According to Fed data, broker loans rose from $3.141 billion at the be-

ginning of 1926 to $6.804 billion at the beginning of October 1929. According to NYSE data, the

broker loan market rose from $3.513 billion to $8.549 billion during the same period. As more

and more non-banks were getting involved in the broker loan market, the difference between

NYSE broker loans and Fed broker loans steadily increased until the last week of October 1929,

when non-bank firms pulled their money out of the broker loan market and the difference sud-

denly shrank.

During the period 1926–1930, weekly changes in broker loans were typically small and often

changed sign, as shown in the tiny bars at the bottom of figure 2. Starting with the last week of

October 1929, there were five consecutive weeks of large negative changes, almost twenty times

larger than changes during preceding weeks. This de-leveraging erased the increase in broker

loans which had occurred during the first nine months of the year.

For the last week of October 1929, we estimate margin selling as $1.181 billion (the difference

between the estimated reduction in broker loans of $2.440 billion from $8.549 billion to $6.109

billion and increase in bank loans on securities of $1.259 billion from $7.920 billion to $9.179

billion). For the three months from September 30, 1929, to December 31, 1929, we estimate

margin selling as $4.348 billion (the difference between the reduction in NYSE broker loans of

$4.559 billion from $8.549 billion to $3.990 billion and an increase in bank loans on securities

of $0.211 billion from $7.720 billion to $7.931 billion).
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Broker Loans, Bank Loans, and DJIA, 1926-1930.

DJIA
NYSE BROKER LOANS

FED BROKER LOANS

NYSE BROKER + BANK LOANS

FED BROKER + BANK LOANS

WEEKLY CHANGES IN NYSE BROKER LOANS WEEKLY CHANGES IN NYSE BROKER + BANK LOANS

Figure 2: Broker Loans and 1929 Market Crash.

The figure shows weekly dynamics of seven variables from January 1926 to Decem-
ber 1930: NYSE broker loans (red solid line), Fed broker loans (red dashed line), the
sum of NYSE broker loans and bank loans (black solid line), the sum of Fed broker
loans and bank loans (black dashed line), changes in NYSE broker loans (red bars),
changes in the sum of NYSE broker loans and bank loans (black bars), and the Dow
Jones average (in blue). Monthly levels of NYSE broker loans are marked with solid
dots. Weekly levels of NYSE broker loans are obtained using a linear interpolation
from monthly data, except for October 1929, when all changes in NYSE broker loans
are assumed to occur during the last week.

Estimation Details for the Crash of 1987

Along with our main estimates in Table 3, we present several other estimates for robustness.

First, some of the market participants classified as portfolio insurers in the Brady Report aban-
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doned their portfolio insurance strategies as prices crashed and switch to buying securities.

Even though we believe that for the purpose of analyzing the price impact of portfolio insur-

ance sales it is better to use the gross sales amount, we also report estimates for net sales of

$11.11 billion of futures contracts and stocks combined ($9.51 billion in futures and $1.60 bil-

lion in stocks). Their predicted impact ranges from 9.71% to 13.78%.

Second, we show implied estimates if we treat markets for futures contracts and NYSE stocks

separately. To avoid radically different price impacts in two markets, we adjust quantities sold

in both markets by the NYSE’s estimate of net NYSE index-arbitrage sales of $3.27 billion (Brady

Report, figures 13–14). We add this number to portfolio insurance sales in NYSE stocks and

subtract the same amount from portfolio insurance sales in the futures market because arbi-

trageurs transferred some price pressure from futures to stocks. This results in net sales of $7.21

billion in the futures market with impact ranging from 10.00% to 14.11% and $6.54 billion in

NYSE stocks with impact ranging from 9.09% to 13.00%. The fact that index arbitrage sales

make price impact estimates similar in both markets is consistent with the interpretation that

portfolio insurance sales were indeed driving price dynamics in both markets.

Estimation Details for Liquidation of Kerviel’s Trades in 2008

We also examine whether implied cost estimates are consistent with officially reported losses

of e6.30 billion. We assume that average impact cost is equal to half of predicted price impact

since—assuming no leakage of information about the trades—a trader can theoretically walk

the demand curve, trading only the last contracts at the worst expected prices. Accounting for

compounding, invariance predicts that the total cost of unwinding Kerviel’s position is equal to

5.55% of the initiale50 billion position, i.e.,e2.77 billion.

Officially reported losses also include mark-to-market losses sustained by hidden naked

long positions as markets fell from the end of the previous reporting period on December 31,

2007, to the decision to liquidate the positions when the market re-opened after January 18,

2008. From December 28, 2007, to January 18, 2008, the Euro STOXX 50 fell by 9.18%, DAX fu-

tures fell by 9.40%, and FTSE futures fell by 8.68%. If we assume that Kerviel held a constant

long position from December 31, 2007, to January 18, 2008, then these positions would have

sustainede4.62 billion in mark-to-market losses during that period. Société Générale reported,

however, that Kerviel acquired his hidden long position gradually over the month of January. If
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we assume that Kerviel acquired his position gradually by purchasing equal quantities of fu-

tures contracts at each lower tick level from the end-of-year 2007 close to January 18 close, we

estimate that such positions would be under water by only half as much, i.e., e2.31 billion, at

the close of January 18.

Table 5 reports that the estimated market impact costs of liquidating the rogue position

range from e2.72 billion to e3.34 billion under different assumptions about expected volume

and volatility. Adding mark-to-market losses sustained prior to liquidation leads to estimated

losses ranging (A) from e5.03 billion to e5.65 billion if positions were acquired gradually and

(B) from e7.34 billion to e7.96 billion if positions were held from the end of 2007. These esti-

mates are similar in magnitude to losses ofe6.30 billion reported by the bank.

As a robustness check, we also estimate market impact under the assumption that the Euro

STOXX 50, the DAX, and the FTSE 100 futures markets are distinct markets, not components of

one bigger market.

In the month preceding January 18, 2008, historical volatility per day was 98 basis points for

futures on the Euro STOXX 50, 100 basis points for futures on the DAX, and 109 basis points for

futures on the FTSE 100. Average daily volume was e55.19 billion for Euro STOXX 50 futures,

e32.40 billion for DAX futures, and £7.34 billion for FTSE 100 futures. Kerviel’s positions ofe30

billion in Euro STOXX 50 futures,e18 billion in DAX futures, ande2 billion in FTSE 100 futures

represented about 54%, 56%, and 20% of daily trading volume in these contracts, respectively.

We use an exchange rate ofe1.3440 for £1 on January 17.

Our calculations estimate a price impact of 12.08% for liquidation of Kerviel’s position, 10.77%

for liquidation of his DAX futures position, and 4.12% for liquidation of his FTSE futures posi-

tion. Indeed, from the close on January 18 to the close on January 23, Euro STOXX 50 futures fell

by 10.50%, DAX futures fell by 11.91%, and FTSE 100 futures fell by 4.65%. Note that from the

close on January 18 to the lowest point during January 21 through January 23, Euro STOXX 50

futures fell by 11.67%, DAX futures fell by 12.71%, and FTSE 100 futures fell by 9.54%. The simi-

larity of actual price declines for the STOXX 50, DAX and FTSE suggests substantial integration

of European markets, consistent with our strategy of thinking about them as one market.

From the close on January 18 to low points on January 22, the Spanish IBEX 35, the Italian

FTSE MIB, the Swedish OMX, the French CAC 40, the Dutch AEX and the Swiss Market Index

fell by 12.99%, 10.11%, 8.63%, 11.53%, 10.80%, and 9.63%, respectively. By January 24, all of

these markets had largely reversed these losses. Euro Stoxx 50 and FTSE reversed losses as well,
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but DAX recovered only partially. Large price declines in markets where Kerviel did not hold

positions suggest that the markets are well integrated as well.

Estimation Details for the Flash Crash of May 6, 2010

Since the price drop in the morning may have reset market expectations about volatility, as a

robustness check, we also report results for expected volatility of 2.00% per day; they range from

1.39% to 1.65%.

If we do not treat the cash market and the futures market as one market but focus only on

the futures market, then the estimates range from 0.76% to 1.29% for historical volatility and

from 2.35% to 2.91% for volatility of 2%.

Appendix D: The Frequency of Market Crashes

Market microstructure invariance can be used to quantify the frequency of crash events, in-

cluding both the size of selling pressure and the resulting price impact.

Using portfolio transitions orders as proxies for bets, Kyle and Obizhaeva (2016) find that the

invariant distributions of buy and sell bet sizes can be closely approximated by a log-normal.

The distribution of unsigned bet size X̃ of a stock with expected daily volume of P ·V dollars

and expected daily returns volatility σ can be approximated as a log-normal

ln

(
X̃

V

)
=−5.71− 2

3
· ln

(
σ ·P ·V

(0.02)(40)(106)

)
+p

2.53 · Z̃ , (23)

where Z̃ ∼N (0,1). Under the assumption that there is one unit of intermediation trade volume

for every bet, the bet arrival rate γ per day is given by

ln(γ) = ln(85)+ 2

3
· ln

(
σ ·P ·V

(0.02)(40)(106)

)
. (24)

These equations have the following implications for a benchmark stock with dollar volume

of $40 million per day and volatility 2% per day1/2. The estimated mean of −5.71 implies a me-

dian bet size of approximately $132,500, or 0.33% of daily volume. The estimated log-variance

of 2.53 implies that a one-standard-deviation increase in bet size is a factor of about 4.91. The
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implied average bet size is $469,500 and a four-standard-deviation bet is about $77 million, or

1.17% and 192% of daily volume, respectively (0.33%·exp(2.53/2) and 0.33%·exp(2.53·4)). There

are 85 bets per day. The standard deviation of daily order imbalances is equal to 38% of daily

volume (851/2 exp(−5.71+2.53)). Half the variance in returns results from fewer than 0.10% of

bets and suggests significant kurtosis in returns.

Now let us extrapolate these estimates to the entire market, where volume is the sum of the

volume of CME S&P 500 futures contracts and all individual stocks. Using convenient round

numbers based on the 2010 flash crash, the volume for the entire market is about $270 billion

per day, or 6,750 times the volume of a benchmark stock. The volatility of the index is about 1%

per day, or half of 2% volatility of a benchmark stock. With 6,750 conveniently equal to 153 ·2,

invariance implies that market volume consists of 19,125 bets (85 ·152) with the median bet of

about $4 million ($132,500 · 15 · 2), or 0.0014% of daily volume. The implied average bet size

is $14 million, or 0.0052% of daily volume, and a four-standard-deviation bet is $2.310 billion

($469,500 ·15 ·2 and $77 ·106 ·15 ·2), or 0.86% of daily volume. The implied standard deviation

of cumulative order imbalances is 2.55% of daily volume (38%/15).

Equations (23) and (24) can be used to predict how frequently crash events occur. The three

large crash events—the 1929 crash, the 1987 crash, and the 2008 Société Générale trades—are

much rarer events than the two smaller crashes—the 1987 Soros trades and the 2010 flash crash.

We estimate the 1929 crash, the 1987 crash, and the 2008 liquidation of Kerviel’s positions

to be 6.15, 5.97, and 6.19 standard deviation bet events, respectively. Given corresponding es-

timated bet arrival rates of 1,887 bets, 5,606 bets, and 19,059 bets per day, such events would

be expected to occur only once every 5,516 years, 597 years, and 674 years, respectively. Ob-

viously, either the far right tail of the distribution estimated from portfolio transitions is fatter

than a log-normal or the log-variance estimated from portfolio transition data is too small. In

the far right tail of the distribution of the log-size of portfolio transition orders in the most ac-

tively traded stocks, Kyle and Obizhaeva (2016) do observe a larger number observations than

implied by a normal distribution. It is also possible that portfolio transition orders are not rep-

resentative of bets in general. If the true standard deviation of log bet size is 10% larger than

implied by portfolio transition orders, then 6.0 standard deviation events become 5.4 standard

deviation events, which are expected to occur about 34 times more frequently.

We estimate the 1987 Soros trades and the 2010 flash crash trades to be 4.45 and 4.63 stan-

dard deviation bet events, respectively. Given estimated bet arrival rates of 14,579 bets and
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29,012 bets per day, respectively, bets of this size are expected to occur multiple times per year.

We believe it likely that large bets of this magnitude do indeed occur multiple times per year,

but execution of such large bets typically does not lead to flash crashes because such large bets

would normally be executed more slowly and therefore have less transitory price impact.
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