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Abstract

We propose a new market design for trading financial assets. The design com-
bines three elements: (1) orders are downward-sloping linear demand curves with
quantities expressed as flows; (2) markets clear in discrete time using uniform-price
batch auctions; (3) traders may submit orders for portfolios of assets, expressed as
arbitrary linear combinations with positive and negative weights. Thus, relative to
the status quo design: time is discrete instead of continuous, prices and quanti-
ties are continuous instead of discrete, and traders can directly trade arbitrary port-
folios. Clearing prices and quantities are shown to exist, with the latter unique,
despite the wide variety of preferences that can be expressed via portfolio orders.
Calculating prices and quantities is shown to be computationally feasible. Micro-
foundations for portfolio orders are provided. The proposal has six advantages over
the current market design. Flow trading (1) eliminates sniping and the speed race,
(2) avoids the complexities and inefficiencies caused by tick-size constraints, (3) re-
duces the cost and complexity of trading large quantities over time, (4) reduces the
cost and complexity of trading portfolios, (5) reduces the cost and complexity of
providing liquidity in correlated assets, and (6) improves fairness and transparency
of optimal execution.
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1 Introduction

Description of the status-quo design Current exchanges for trading equities and many

other financial assets, such as futures, options, and treasury bonds, implement a market

design with the following features. Most orders are variations on a standard limit order,

such as “Buy 1000 shares of AAPL at $150.00 or better,” which has one maximum quan-

tity and one limit price. The orders are processed continuously, one at a time in order

of arrival, with incoming “executable” orders matched in whole or in part with “non-

executable” orders resting in the limit order book. Orders are for single securities rather

than for portfolios of securities. Displayed bids and offers respect a minimum “tick size,”

which is typically $0.01 per share for U.S. stocks, and a minimum “lot size,” which has

historically been 100 shares for most U.S. stocks. Traded quantities must also respect a

minimum tick size and minimum lot size.

This market design is the natural electronic version of the limit order books used in

the era of human trading—tracing not only to the era of specialists and trading pits but

also back to trading under the buttonwood tree. A human can run a limit order mar-

ket with pen-and-paper or simple electronic recordkeeping if the orders arrive slowly

enough, and computers can run limit order markets at modern speeds and order vol-

umes.1

However, there are multiple ways that this market design creates unnecessary costs,

complexity, and perceptions of unfairness for investors and other financial market par-

ticipants, especially given the market design possibilities afforded by modern comput-

ers.

First, since any order resting on the limit order book is subject to immediate exe-

cution against the next incoming order, any time there is new public information that

affects an asset’s market price, resting limit orders risk being “picked off” or “sniped”

by high-frequency traders acting on this information. Such orders trade at a stale price.

This sniping raises the cost of providing liquidity using limit orders and is perceived by

many market participants to be unfair. Recent evidence suggests that such sniping races

constitute over 20% of all trading volume and constitute from 17% to 33% of the market’s

cost of liquidity depending on the measure used (Aquilina, Budish, and O’Neill (2022)).

Second, the discrete minimum tick size, which is necessary to prevent an explosion

1See MacKenzie (2021) for a history of this evolution from human-based trading to computer-based
trading. See Aquilina, Budish, and O’Neill (2022, Section 2) for a detailed overview of the market design
and associated computer systems architecture for handling modern levels of speed and order activity.
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of message traffic under the current market design, artificially constrains the market’s

cost of liquidity. This constraint has been shown to lead to (i) high-frequency trading

races for queue position, (ii) a proliferation of complex order types to navigate this race

for queue position, and (iii) the proliferation of exchanges with creative fee schedules

designed to circumvent this constraint. Both sniping and tick-size constraints also likely

play a role in the proliferation of off-exchange trading, now nearly 50% of equity volume

in the United States.2

Third, institutional investors trading large quantities of stock typically now do so by

placing and canceling thousands of small orders spread out over time to reduce price

impact and disguise trading intentions. This was anticipated by Black (1971). If an

institutional investor’s trading leaves a detectable statistical trace, algorithmic trading

firms who detect the trading demand can profitably trade in front of the institutional in-

vestor.3 Institutional investors therefore must have access to complex, expensive trading

platforms to manage their orders, or risk being algorithmically front run. Such trading

tools are unavailable to many smaller investors.

Fourth, these costs and complexities of optimal trading are even more severe for in-

vestors trading portfolios or engaging in long-short arbitrage strategies. Not only must

investors manage price impact and smoothing their trading over time for each individ-

ual security in the trading strategy, but they must also handle the additional complexity

that comes from managing the relative rates of trade across the different securities in

the trading strategy. Some indirect evidence on the value of efficiently trading portfo-

lios comes from the rise of exchange traded funds (ETFs). ETFs are redundant assets

that enable investors to trade portfolios efficiently, in exchange for a management fee

on holdings that averages about 20 basis points. ETFs now constitute a remarkable 40%

of all U.S. stock market volume.4

2See the series of papers Chao, Yao, and Ye (2017, 2019), Yao and Ye (2018), and Li, Wang, and Ye (2021)
on the various complexities created by tick-size constraints in U.S. equity markets, with additional refer-
ences contained therein. Data on the share of off-exchange trading is available from SIFMA and was cited
in Sept 2021 Senate testimony by SEC Chair Gary Gensler.

3As one simple example, Hasbrouck and Saar (2013) point out that execution algorithms that trade
every second, on the second, leave an obvious statistical trace in a continuous-time market. If trading
can take place at any nanosecond, it would be an astonishing coincidence for a sequence of trades to
occur at exactly 1.000000000, 2.000000000, 3.000000000, etc. Note that the same trading would not leave
as obvious a statistical trace in a discrete-time batch process market, in which all trade occurs at exactly
1, 2, 3, etc.

4ETF volume is computed from CRSP (ETFs are share code 73). The 40% figure is ETFs’ proportion of
on-exchange trading volume in dollars. Vanguard reports that the asset-weighted average ETF expense
ratio for non-Vanguard ETFs is 0.24% in 2020.
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Flow trading This paper proposes a new market design for financial exchanges, “flow

trading.” The design is motivated by the costs and complexities described above and the

design possibilities enabled by modern computational power.

Flow Trading Traditional Exchange

Downward-sloping piecewise-linear Discontinuous step functions
supply and demand curves for discrete quantities
for flows

Batch auctions once per second Sequential matching one at a time

Orders for portfolios (linear combinations) Orders for one asset

Table 1: Comparison of Flow Trading with the Status Quo Design

Flow trading is a combination of three key elements (Table 1). First, instead of limit

orders that define demands as step functions of price, traders place flow orders that

specify demands as piecewise-linear downward-sloping functions of price, with quan-

tities expressed as flows rather than as discrete quantity changes (Kyle and Lee (2017)).

For example, “Buy a maximum of one share per second at $150.00 or better, declining to

zero shares per second at $150.10 or worse, until 1000 shares are bought.”

Second, instead of the market processing orders one at a time in sequence, orders

are processed in discrete time using uniform-price batch auctions (“frequent batch auc-

tions,” Budish, Cramton, and Shim (2015)). Suppose the discrete-time interval is one

second. A flow order to buy at a maximum rate of one share per second will buy one

share per batch if fully executable at the clearing price, a fraction of a share per batch

if partially executable (i.e., the clearing price is in the range where the order’s demand

is strictly downward sloping), or no shares per batch if non-executable. Orders persist

over many auctions. An order remains outstanding until the trader cancels it or a user-

defined termination criterion is met, such as the cumulative purchase of 1000 shares.

The combination of flow orders and batch auctions allows prices and quantities to

be approximately continuous—tiny fractions of shares can trade each second within a

nearly continuous price grid. For example, quantities could be expressed in nano-shares

(billionths of shares) and prices in micro-dollars (millionths of dollars). In the status quo

market design, making prices and quantities approximately continuous would cause

an explosion of message traffic, with traders constantly canceling and replacing orders
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to improve their queue position. In our proposed design, prices and quantities can be

approximately continuous without issue.

Third, instead of restricting to orders for single assets, our design allows traders to di-

rectly trade arbitrary portfolios of assets. In our design, a “portfolio” is any user-defined

linear combination of assets, in which asset weights can be arbitrary positive or nega-

tive real numbers. Market clearing prices balance the demand and supply for each asset

on an asset-by-asset basis, not on a portfolio-by-portfolio basis. The number of mar-

ket clearing constraints is equal to the number of underlying assets, not the number of

different portfolios—composed from these assets—for which orders are placed. Thus,

a specific portfolio order may be matched against multiple orders for individual assets

and other, different portfolios. Portfolio orders allow assets to be either complements

or substitutes. If two assets in a portfolio have weights with the same sign, the assets

are complements in the usual sense that an increase in the price of one asset decreases

the quantity demanded of the other. If two assets have weights with opposite signs, the

assets are substitutes because an increase in the price of one asset increases the quan-

tity demanded of the other. For example, a pairs trade has a positive weight on the stock

being bought and a negative weight on the stock being sold. An order to buy the S&P 500

has positive weights on each of the 500 stocks in the index. An order to sell a portfolio

of assets, which represents an upward-sloping supply curve for the portfolio, is imple-

mented as an equivalent downward sloping demand curve for a portfolio with negative

weights on the assets being sold and zero weight on all other assets.

If the underlying space of assets is redefined by rotating assets with a nonsingular

linear transformation, the set of portfolios a trader can trade is unaffected by such a

change in basis assets.

In sum, relative to the status quo market design, the proposed market design makes

time discrete instead of continuous, prices and quantities continuous instead of discrete,

and allows participants to directly trade arbitrary user-defined portfolios.

Benefits Flow trading directly addresses the four concerns raised above about the sta-

tus quo market design. First, sniping is directly addressed by discrete-time batch pro-

cessing (Budish, Cramton, and Shim (2015)). Moreover, flow trading makes the executed

quantity proportional to the length of time, which means that even if new public infor-

mation arrives just before the next batch auction, so that regular traders are vulnerable

to sniping, the actual quantity executed at unfavorable prices will remain small. Sec-
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ond, the complexities and inefficiencies caused by tick-size and lot-size constraints are

directly addressed by making prices and quantities approximately continuous. There no

longer would be a reason to use non-standard exchange fee schedules or off-exchange

trading venues to “hack the penny.” Additionally, there no longer would be an incen-

tive to race for advantageous queue position, further reducing the rents from speed.

Third, investors who wish to trade large quantities over some time can do so directly,

with a single order. They can easily tune the urgency of trade by choosing the maxi-

mum flow rate— trading more slowly if their information is not time-sensitive and vice

versa. In effect, the ability to trade at the time-weighted average price (TWAP) is built

directly into the market design. Moreover, since trading is batched, it is easier for a large

trader to blend in with other traders (as in models such as Kyle (1989), Vayanos (1999),

Kyle, Obizhaeva, and Wang (2018), Du and Zhu (2017)) without complex infrastructure.

Fourth, investors who wish to trade portfolios can do so directly. Investors can define

and directly trade their own custom ETFs, or long-short arbitrage portfolios, etc. Again,

this reduces the need for costly trading infrastructure—expensive for large investors and

unavailable to many smaller investors.

Another benefit of flow trading, related both to this last point about trading portfo-

lios and to arguments by Budish, Cramton, and Shim (2015), is that market participants

can more easily provide liquidity across correlated assets and link price discovery across

correlated assets. Suppose A and B are highly correlated assets. In the continuous mar-

ket, a change in the price of one asset can lead to a sniping race in the other asset—this

adds to the expense of providing liquidity. With flow trading, a market participant can

directly provide liquidity in the pairs trades “Buy A, Sell B” and “Sell A, Buy B” (indeed,

the latter is just an offer to sell the former). Even if an investor arrives wanting to buy

just A, the order is automatically incorporated into A and B clearing prices. There need

not be a sniping race in asset B, nor is there any “correlation breakdown” of prices be-

tween A and B (Budish, Cramton, and Shim (2015)). The pairs trade order is like a string

that ties the correlated assets’ prices together, maintaining their underlying economic

pricing relationships.

Last, the new market design significantly improves transparency and fairness. The

key feature is that all orders that are executable at the clearing prices are executed, either

at their full rate or a partial rate depending on the order’s pricing parameters, and all or-

ders that execute for a given asset receive the same pricing for that asset. This feature

allows every trader, whether trading 100 shares or 100,000, to infer exactly the execution
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rate on their order from publicly announced clearing prices. An institutional investor

trading a sophisticated portfolio can confirm they received the correct execution. This

ability perhaps does not sound radical, but it is a significant transparency improvement

over the current market design, where checking whether one’s order received appropri-

ate execution is difficult (see Tyc (2014)).

Having mentioned these potential benefits, we add an important caveat, which is

that flow trading is not designed to mitigate market failures related to market power

or private information (see Rostek and Yoon (2020) for a recent survey of these issues).

Market participants still must think strategically about how to trade on private informa-

tion and manage their price impact, just as in the status quo market design. Flow trading

removes some of the unnecessary technological costs and complexities surrounding this

game, but the fact remains that large trades will move prices.

Technical Foundations We provide three sets of technical results: on existence and

uniqueness of market-clearing prices and quantities; on computability of these prices

and quantities; and results that provide microfoundations for the bidding language.

To prove existence of equilibrium prices and quantities, we transform the problem

into a well-understood quadratic optimization problem with linear constraints. To do

so, we first impute a quasi-linear quadratic utility function to each order by interpreting

the order as an expression of preferences defining a linear marginal utility curve over the

range where it is partially executable. The sum of these utility functions creates a con-

cave objective function. The restrictions that each order must execute at a rate between

zero and its maximum rate (e.g., one share per second) are linear inequality constraints.

Market clearing defines linear equality constraints for each asset. Zero trade is feasible

since it satisfies both sets of constraints. This setup allows us to use known results from

convex optimization to prove existence of unique equilibrium quantities.

Equilibrium prices are Lagrange multipliers of the primal problem. Regardless of

whether assets are complements or substitutes, market-clearing prices exist because our

language imposes downward-sloping demand curves on all user-defined portfolios. (We

discuss the connection to other existence and non-existence results in the next sub-

section.) Prices, however, may be non-unique when there are no partially executable

orders from which unique prices can be inferred. For example, when there is only one

order to buy or sell some asset, the market clearing quantity must be zero, but any price

at which the order is non-executable clears the market. Prices can easily be made unique
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by introducing a tie-breaking rule.

To show computational feasibility of the market design, we start by showing our

problem has a structure such that the gradient method (equivalent to Walrasian taton-

nement) is guaranteed to converge. This proves that our problem is computationally

simpler than some cases of finding competitive equilibrium prices (Scarf and Hansen

(1973)), as the reader will anticipate from the quadratic-programming setup described

just above. It is well known, however, that the gradient method may be slow and inac-

curate for problems with this structure. We therefore add to the market design that the

exchange itself can serve as a “market maker of last resort.” Formally, the exchange is

willing to buy or sell an epsilon amount of any portfolio at the clearing prices. This al-

lows us to use interior point methods, which are much faster and more accurate than

the gradient method. Without the exchange as market maker, we know that zero trade

is feasible but it is not strictly on the interior of the constraint set; with the exchange as

market maker, we can easily find a feasible point strictly on the interior, from which the

algorithm can be initialized.

We provide computational proof-of-concept by calculating clearing prices for a sim-

ulated order book using our own implementation of a public-domain interior-point

method on an ordinary workstation. In a market with 500 assets and 100,000 orders,

our algorithm calculates prices in about 0.15 seconds in the baseline scenario (with the

computation time ranging from 0.12 to 0.27 seconds when we consider a wide range

of parameter values). With 500 assets and 1,000,000 orders, computation time is about

0.56 seconds. With 2000 assets and 100,000 orders, the computation time is about 1.1

seconds. Conceptually, our goalpost for the computational exercise is to suggest that

serious computing power can solve a practical problem of realistic size in less than one

second, not just to illustrate the the solution to the problem is in P and not NP.

We provide a stylized microfoundation for portfolio orders. Portfolio orders can-

not express arbitrary preferences. Indeed, with wealth effects, demand schedules may

slope upward. Such demands cannot be expressed in our language because we require

demand schedules to be downward sloping. For a “CARA-normal” investor (with expo-

nential utility or constant absolute risk aversion and subjective beliefs that liquidation

values are normally distributed), the demands for assets are linear functions of the as-

set’s own price and the prices of other assets. Such demands cannot be implemented

with standard limit orders due to the dependence of demand on prices for other as-

sets. We show that, by rotating the assets in portfolios in a specific manner, such de-
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mands can be implemented with downward-sloping portfolio orders consistent with

our proposal. This asset-rotation approach works because the variance penalty in a

CARA-normal setting generates a positive-semidefinite covariance matrix, which makes

portfolio demands downward-sloping. The approach generalizes to taking account of

linear price impact under the mild assumption that trading any portfolio has a positive

(quadratic) price impact cost.5

Structure of the paper The rest of the paper is structured as follows. Section 2 dis-

cusses related literature. Section 3 describes flow orders. Section 4 discusses the exis-

tence and uniqueness of market clearing prices and quantities. Section 5 shows compu-

tational feasibility of our proposal. Section 6 provides a microfoundation for portfolio

orders. Section 7 discusses implementation and policy issues. Section 8 concludes.

2 Related Literature

We divide our discussion of related literature into two parts. Section 2.1 discusses the

prior work related to the flow trading market design. Section 2.2 discusses prior work

that is related to the results that equilibrium prices and quantities exist.

2.1 Literature Related to the Proposed Market Design

The conceptual ideas behind this paper’s market design proposal—piecewise-linear downward-

sloping demand schedules, portfolios as linear combinations of assets, general equilib-

rium theory, quadratic programming, batch auctions, reducing temporary price impact

by trading slowly—are well-understood by researchers in economics and finance. Our

contribution is to combine these ideas into a coherent and practical market design for

trading financial assets such as stocks, bonds, and futures contracts.

The two prior works most closely related to our paper are Kyle and Lee (2017) and

Budish, Cramton, and Shim (2015). Kyle and Lee (2017) propose downward sloping,

piecewise-linear flow orders for individual assets (“continuously scaled limit orders”).

Budish, Cramton, and Shim (2015) propose frequent batch auctions as a market design

5In general, implementing N asset demands requires N portfolio orders. If traders believe that assets
have a factor structure of rank K < N , they can implement the optimum with only K portfolio orders,
which may be practically appealing. Moreover, we then find that a trader who wishes to use K ′ <K orders
optimally does so by sorting on the portfolio Sharpe ratios, which may be practically appealing as well.
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for financial exchanges. Combining these two market design ideas yields a market de-

sign for financial assets in which time is discrete instead of continuous, and prices and

quantities are continuous instead of discrete. This is appealing for many reasons de-

scribed above. Put another way, the present paper shows that these two prior market

design ideas are complements, not substitutes.

The third ingredient of the market design proposal, portfolio orders, is novel to this

paper. To be more precise, the broad idea of bidding for financial portfolios instead of

individual assets is obvious from the combinatorial auctions literature, but our specific

language for portfolio bidding is novel. We suggest via a long list of example use cases

that our proposed language is practically useful for real-world financial markets. Dif-

ferent ways of representing preferences for portfolios also might not yield the existence

and computability results we obtain here.

Sophisticated expression of preferences over multiple objects is a theme in the mar-

ket design literature more broadly. Research on this topic has straddled computer sci-

ence, economics, and operations research (Lahaie and Parkes (2004); Sandholm and

Boutilier (2006); Milgrom (2009); Klemperer (2010); Vohra (2011); Bichler (2017); Cram-

ton (2017); Budish, Cachon, Kessler, and Othman (2017); Parkes and Seuken (2018); Bud-

ish and Kessler (forthcoming)). This literature has focused on indivisible-goods combi-

natorial allocation problems, such as spectrum auctions. Relative to this burgeoning

literature, our contribution is our proposed language for portfolio orders, which treats

all goods as perfectly divisible, and allows complementarities and substitutabilities only

to the extent that they can be expressed with linear portfolio weights. This language is

simple enough to obtain strong existence and computational results, while being ex-

pressive enough to capture many important use cases in financial markets.

Another closely-related body of work by Li, Wang, and Ye (2021), Chao, Yao, and Ye

(2019), Chao, Yao, and Ye (2017) and Yao and Ye (2018) highlights the complexities cre-

ated by tick-size constraints in modern markets and associates tick-size constraints with

an important aspect of high-frequency trading, the race for queue position. As empha-

sized, our market design makes time discrete and prices continuous, thus eliminating

the inefficiencies caused by tick-size constraints.

The idea that optimal trading strategies involve flow trading to reduce temporary

price impact costs, even when prices and quantities are continuous, emerges as an equi-

librium result in game-theoretic models of rationally-optimizing strategic traders. Black

(1971) conjectures that more urgent execution of large orders incurs greater price im-
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pact costs. In the context of a continuous-time model of information-based trading

among overconfident and privately informed traders, Kyle, Obizhaeva, and Wang (2018)

describe an equilibrium in which exponential utility and normal distributions imply all

traders optimally submit linear flow strategies. In discrete-time models with trading mo-

tivated by private values or endowment shocks, Vayanos (1999) and Du and Zhu (2017)

derive optimal trading strategies in which quantities are linear functions of price and

inventories become differentiable functions of time in the limit as the time interval be-

tween auctions becomes zero.

A growing literature studies the implications of allowing orders to trade one asset

to be contingent not only on the asset’s price but on the prices of other assets (Cespa

(2004), Rostek and Yoon (2021), Wittwer (2021)). For example, Rostek and Yoon (2021)

study strategic behavior in a market with multiple assets and imperfectly competitive

traders, under market designs with both contingent and non-contingent orders. In their

framework, contingent orders allow a trader’s demand for one asset to be a function of

the price of all other assets, whereas non-contingent orders require that a trader’s de-

mand for each asset is a function only of the price of that asset. Portfolio orders, as de-

fined here, are an intermediate case between contingent and non-contingent orders. A

trader’s demand for one asset can depend contingently on the prices of other assets, but

only through these other asset prices’ effects on the price of the trader-defined portfolio

the assets belong to. In Section 6 we show that traders can use a collection of portfolio

orders to implement their optimal fully-contingent demand.

Surprisingly, in these models, which study a one-shot Walrasian auctioneer frame-

work, the efficiency and welfare consequences of allowing for contingent demands are

ambiguous. Each trader’s individually optimal demand is indeed contingent on all asset

prices, but allowing for contingent orders affects incentives to strategically shade de-

mand and supply, and the net effects of this incremental strategic behavior can affect

efficiency or welfare in either direction. Chen and Duffie (2021) provide a related insight

by studying fragmentation of trade of the same asset across multiple trading venues.6

We note that these analyses do not study the efficiency issues which motivate this pa-

per’s market design proposal, such as reducing the technology and intermediation costs

of trading portfolios (in these models, trading, including complex trading, is free) or re-

6On the other hand, Antill and Duffie (2020) find that fragmentation of trade of the same asset across
multiple trading venues is unambiguously negative for efficiency in the case where one trading venue is
the center of price discovery and other trading venues engage in size discovery (i.e., trade at the price
discovered by the price-discovery venue).
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ducing latency arbitrage opportunities across venues (in these models there is mostly

just a single trading period). We also emphasize in the conclusion that extending this

style of analysis to the case of portfolio orders as introduced here is an interesting open

question for research.

2.2 Literature Related to Existence Results

We obtain existence of market-clearing prices and quantities despite the wide range of

preferences, including both substitutes and complements, that can be expressed using

portfolio orders. In this subsection we describe the relationship of our existence results

to the textbook general equilibrium theory approach and to the literature on indivisible

goods.

Relationship to General Equilibrium Theory Readers familiar with the standard treat-

ment of general equilibrium theory will notice differences in our approach to existence

and uniqueness. Mas-Colell, Whinston, and Green (1995, Chapter 17) ("MWG”) is a

reference for the standard treatment, descending from Arrow and Debreu (1954) and

McKenzie (1959). This standard approach uses fixed-point theorems to derive exis-

tence results for general convex preferences which include income effects. Finding the

fixed point is known to often be computationally intractable (Scarf and Hansen (1973);

Daskalakis, Goldberg, and Papadimitriou (2009); Budish, Cachon, Kessler, and Othman

(2017)). By contrast, our market design approach focuses on a language for preferences

that yields existence and uniqueness within a computationally tractable framework.

There are three main differences with the standard treatment, as explicated in MWG.

First, the setting and assumptions are different.

1. While MWG define preferences for the entire positive orthant, our model defines

preferences for a given portfolio on the line segment (0, q), representing partial

execution of an order to buy the portfolio. The portfolio can be a short position.

By defining utility to be minus-infinity off the line segment, we preserve convexity

over a larger space, but we lose continuity.

2. While MWG allow general preferences that allow income effects, we assume quasi-

linear utility functions of the form u(x)−πππ⊺x, which do not have income effects.
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3. While MWG require strongly monotone preferences and strictly positive prices,

our preferences are not strongly monotone and prices can be negative. Moreover,

it may be difficult to make preferences monotone, even over the restricted domain

of agents’ demands, because there is no natural “up” direction for the legs of a

pairs trade.

Second, the technique to prove the existence of equilibrium is distinct. While MWG

relies on Kakutani’s fixed-point theorem, we use quadratic programming.

Third, while equilibrium may not be unique in MWG, we have uniqueness up to a

convex set. This results from using quasi-linear utility, making the second derivative of

the planner’s objective function negative (semi) definite. This guarantees that all equi-

libria must lie in a convex set. In our framework, substitutes and complements do not

matter for existence or uniqueness, since the matrix is negative semi-definite anyway.

Relationship to the Indivisible Goods Literature Our assumptions are in some re-

spects more similar to assumptions made in the literature on indivisible goods, which

typically uses quasi-linear utility.

Kelso Jr. and Crawford (1982) show that competitive equilibrium is guaranteed to ex-

ist in an indivisible goods setting under a substitutes condition. There have been many

different variations of the Kelso–Crawford substitutes condition defined in the litera-

ture; see Gul and Stacchetti (1999); Milgrom (2000); Hatfield and Milgrom (2005); Ostro-

vsky (2008); Hatfield et al. (2013). Hatfield, Kominers, and Westkamp (2021) discuss the

relationship among many of these criteria and provide a maximum domain result for

existence.

Baldwin and Klemperer (2019), on the other hand, use tropical geometry to show

that existence can be obtained not only when indivisible goods are substitutes but also

in some cases when they are complements. For example, left shoes and right shoes are

clearly complements, but prices for shoes may nevertheless be guaranteed to exist if all

agents’ preferences regard them as complements in ways that enable the application of

the Baldwin and Klemperer (2019) existence theorems. For example, if all agents pur-

chase shoes as pairs, and no agents regard left shoes and right shoes as substitutes for

each other, prices are guaranteed to exist.

Unlike Baldwin and Klemperer (2019), or most of the indivisible-goods substitutes

literature, we obtain existence for any preferences expressible in our language. This

stronger existence result relies on our treatment of assets as perfectly divisible (avoiding
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the potential difficulties of exact market-clearing when there are indivisibilities) and—

as noted above in the discussion of the relationship to general equilibrium theory—the

restriction that preferences are only defined for each portfolio on a line segment exactly

corresponding to those portfolio weights, as opposed to preferences being well defined

on a richer consumption space.

Two other papers in the indivisible goods literature that deserve special mention are

Klemperer (2010), which proposes the product-mix auction, and Milgrom (2009), which

proposes the assignment auction. (These papers in turn descend from Shapley and

Shubik (1971) and Demange, Gale, and Sotomayor (1986)). Both papers describe multi-

object auction designs that use linear preference languages and are motivated in part

by financial applications—Klemperer’s auction, in particular, was designed for the Bank

of England to purchase toxic financial assets during the financial crisis. Technically, the

key difference versus our proposal is the preference language. In our design, partici-

pants have piecewise-linear demands for portfolios of assets, which can have arbitrary

user-defined positive and negative asset weights. In Klemperer’s and Milgrom’s designs

participants have piecewise-constant demands, expressing preferences over mutually-

exclusive substitutable assets, including Shapley–Shubik unit-demand for substitutes

preferences as a special case. For example, our design would allow a user to buy a port-

folio consisting of assets A and B in some user-specified ratio, with downward sloping

demand for the portfolio, whereas Klemperer’s and Milgrom’s auction designs would al-

low the user to buy a specified quantity of whichever of A or B gives them more surplus at

realized prices. This difference in language then drives differences in the statements and

methods of proof for existence and uniqueness results. Practically, the papers have dif-

ferent intended use cases. We have in mind near-continuous trading of financial assets,

in which users trade portfolios in flows. Klemperer’s and Milgrom’s designs are intended

for one-shot, high-value allocation problems—e.g., a high-value auction for toxic assets

during the financial crisis, or a spectrum auction.

3 Flow Orders

3.1 Formal Definition of Flow Orders

Traditional limit orders consist of a price, quantity, and direction of trade for a single

symbol. For example, buy 1000 shares of AAPL at $150.00 per share. The order implicitly
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defines a step-wise demand curve, with full demand (1000 shares) at any price weakly

better than the limit and zero demand at any price strictly worse than the limit.

Flow orders depart from traditional limit orders in 3 ways:

1. Orders are for portfolios of assets instead of individual assets. A portfolio is defined

by a vector of weights, wi ∶= (wi 1, . . . , wi N)⊺, where i identifies the order, N denotes

the number of assets in the market, and wi n ∈ R denotes the portfolio weight of

asset n in order i . A strictly positive weight denotes buying the asset, a strictly

negative weight denotes selling the asset, and a zero weight denotes that the asset

is not a part of that portfolio.

2. Flow orders specify piecewise-linear downward-sloping demands. Each order spec-

ifies two prices: a lower limit pL
i and an upper limit p H

i , with pL
i < p H

i . The flow or-

der interprets pL
i as a demand to buy the portfolio in full quantity at prices weakly

lower than pL
i . It interprets p H

i as indicating zero demand for the portfolio at

prices weakly higher than p H
i . Then, in the interval [pL

i , p H
i ], the flow order lin-

early interpolates the quantity demanded from full quantity at pL
i to zero quantity

at p H
i .7 Note that we use the phrase “buy the portfolio” to include the case of sell-

ing assets—in our language, selling an asset is buying a portfolio with a negative

weight on the asset at a negative price (i.e., receiving a transfer). We will clarify this

point in detail below.

3. Quantities are expressed as flows per batch interval, up to a total quantity limit.

For each order i , the user specifies two quantity parameters, qi > 0 and Qmax
i > 0,

expressing their demand to buy up to quantity qi of the portfolio per batch inter-

val, up to a cumulative total purchased quantity of Qmax
i . Instead of requiring that

quantities express a demand to trade immediately (1000 shares now), users can

tune their urgency to trade.

Thus, a flow order is described by the tuple (wi , pL
i , p H

i , qi ,Qmax
i ). (Throughout this

paper, we use a lower-case bold font to denote vectors, an upper-case bold font to de-

note matrices, a subscript i to denote orders, and a subscript n to denote assets.)

7In a traditional limit order at price p, the implied demand is the full quantity at prices weakly better
than p and zero quantity at prices strictly worse than p. In our language, these two implications of the
traditional limit price are split into two separate parameters: demand in full at prices weakly better than
the lower limit pL

i , and demand zero at prices weakly worse than the upper limit p H
i .

14



Next, we define a flow order’s demand within a batch auction. Assume that the or-

der’s cumulative purchased quantity is not within qi of Qmax
i , so that the order can pur-

chase its full quantity qi in the next batch without exceeding Qmax
i .8 Letπππ = (π1, . . . ,πN)⊺

denote the column vector of market prices of all assets n = 1,. . . ,N . The market price for

the portfolio defined by the weight vector wi is the inner product

pi =wi
⊺πππ ∶=

N

∑
n=1

wi nπn . (1)

Order i ’s demand per batch auction, which we call its “flow demand,” is the downward-

sloping linear function of the portfolio price pi =wi
⊺πππ defined by:

Di (pi ∣wi , qi , pL
i , p H

i ) = qi trunc(
p H

i −pi

p H
i −pL

i

) , where trunc(z) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, for z ≥ 1

z, for 0 < z < 1

0, for z ≤ 0

.

(2)

Notice how the rate at which order i buys the portfolio depends on the order’s quan-

tity limit qi and where the price for the portfolio is relative to the order’s price param-

eters pL
i and p H

i . If the portfolio price pi is less than or equal to pL
i , the order is “fully

executable,” and the portfolio is bought at the maximum rate qi . If the portfolio price

pi is higher than p H
i , then the order is “nonexecutable” and does not buy at all. If the

portfolio price is somewhere between p H
i and pL

i , the order is “partially executable” and

buys at the rate determined by linear interpolation between the two price parameters.

Buying vs. Selling This formulation treats “selling” an asset as buying a portfolio with

a negative weight on that asset at a negative price. This not only generates compact

notation for representing both buying and selling but also emphasizes a symmetry be-

tween buying and selling, which will be important for understanding how market clear-

ing works. General equilibrium theory often uses this idea that an upward sloping sup-

ply curve for positive quantities is equivalent to a downward sloping demand curve for

negative quantities.

Whether buying or selling, we have pL
i < p H

i and demand defined according to equa-

8In the case where the order’s cumulative purchased quantity, say Q t
i , is within qi of the limit Qmax

i ,
replace qi with the remaining quantity demanded Qmax

i −Q t
i , and increase pL

i so that the slope of the
demand curve is the same as it was originally.
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Figure 1: Plots of (a) the function trunc(z); (b) a single buy order, with pricing parameters
pL

i = $41.00 and p H
i = $42.00, and maximum flow demand of qi = 5.00 portfolio units per batch

auction; (c) a single sell order, initially plotted as an upward-sloping supply curve with one
upward-sloping linear segment, and (d) the same sell order, now plotted as a downward-sloping
demand for negative quantities, which is our treatment here. The pricing parameters for the
sell order are pL

i = −$42.00 and p H
i = −$41.00, with maximum flow demand of qi = 5.00 portfolio

units per batch auction. The figures for buy and sell orders are plotted with flow quantity on the
horizontal axis and price on the vertical axis.

tion (2). However, when selling, both pL
i and p H

i are negative. For example, an order

to sell XYZ in full at price $42.00 or higher, with the sell rate declining linearly to zero

at price $41.00, would be encoded with pL
i = −$42.00 and p H

i = −$41.00. There are two

equivalent ways to remember this. First, think of pL
i as analogous to the price limit in

a limit order (willing to trade in full at this price or better), with demand then declining

linearly to zero in the interval [pL
i , p H

i ]. Alternatively, think of p H
i as the price at which

the trader is exactly indifferent between trading and not. Then, as the price improves

from p H
i , the trader’s quantity demanded increases linearly, up to a maximum quantity

of qi when the price reaches pL
i or better.

See Figure 1 for an illustration of buying and selling.

Last, note that if a portfolio has both positive and negative weights, there may not

be a natural buying versus selling direction to the order. The trader is always “buying

the portfolio” under our approach, but whether their pricing parameters pL
i and p H

i are

positive or negative will depend on the weighted valuations of the assets in the portfolio.

Additional Technical Remarks on the Formulation We make two additional remarks

on this formulation.

First, observe that while the above demand function in equation (2) has a single
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downward-sloping segment, the user can define an arbitrary piecewise-linear downward-

sloping demand function for a given portfolio with multiple flow orders.

Second, order specification using the tuple of parameters (wi , pL
i , p H

i , qi ,Qmax
i ) con-

tains an intentional redundancy of notation. Buying a portfolio containing one share

each of two stocks at a rate of ten portfolio units per batch auction is equivalent to buy-

ing a portfolio containing half a share of each stock at a rate of twenty portfolio units per

batch auction. More generally, for some parameterα > 0, changing the order parameters

from (wi , pL
i , p H

i , qi ,Qmax
i ) to (αwi ,αpL

i ,αp H
i , qi /α,Qmax

i /α) has no effect on the trade

rates for each asset as a function of asset prices. We do this because in some circum-

stances it will be natural to normalize some stocks’ individual weights to one or minus

one, while in others it may be more natural to normalize the sum of weights.

Proxy Instructions For Orders Over Time As in the traditional market design, users

may modify or cancel their flow orders at any moment in time throughout the trading

day. Additionally, users may want to specify what we will refer to as “proxy instructions”

that modify or cancel their orders under specified contingencies.

The parameter Qmax
i is an example of such a proxy instruction: cancel the order from

the market once the cumulative total quantity Qmax
i has been reached. Another example

is time-in-force instructions, such as “good for day” or good for some other specified pe-

riod. In principle, the exchange could provide more complex examples, such as allowing

an order’s pricing parameters to vary dynamically over time as a function of recent prices

(“Ensure that my order’s price impact is never more than ten basis points”), or allowing

an order’s quantity parameter to vary over time (“Reduce this order’s flow quantity if I

am averaging above ten percent of trading volume”). We will not discuss such complex

order contingencies in this paper.

3.2 Examples

We give several examples to illustrate the flexibility of portfolio orders.

1. Standard limit order.

A standard limit order expresses preferences to buy or sell a specified quantity of

one asset at one limit price. A flow order can be specified to approximate a limit

order. First, when only one weight wn is nonzero, the order is an order to buy one

asset if the weight is positive or to sell one asset if the weight is negative. Second,

17



the maximum rate qi can be set to equal the quantity the trader wants to buy or

sell, Qmax
i . Third, the price parameters can be set so that pL

i corresponds to the

intended limit price and p H
i is as close as possible to pL

i . Theoretically, we obtain

a limit order in the limit as p H
i → pL

i
+

.

2. Time-weighted average price (TWAP) order.

In the traditional market design, a market order executes immediately at the clear-

ing price. The analog here is a time-weighted average price (TWAP) order. The

user specifies a price parameter pL
i that is sufficiently aggressive relative to recent

prices that it is essentially guaranteed to execute.9 Then, the user will trade quan-

tity qi of the portfolio every batch auction until their quantity limit is achieved

(i.e., they will trade at the TWAP over this period).

3. Pairs trades.

A pairs trade is executed by specifying a portfolio weight vector wi with one strictly

positive entry, one strictly negative entry, and the rest zeros.

4. Portfolio trades.

A portfolio trade is executed by specifying a portfolio weight vector wi with either

all entries weakly positive (if buying the portfolio) or all entries weakly negative

(if selling the portfolio). The assets whose weights are strictly positive or strictly

negative comprise the portfolio.

Traders can construct and trade their own index portfolios. For example, an order

to buy the S&P 500 has positive weights on each stock in the S&P 500 index, with

weights proportional to S&P 500 weights and zero weight on stocks not in the S&P

500 index. An order to sell an index has negative weights on all stocks in the index.

Traders can easily customize index portfolios by adjusting portfolio weights—e.g.,

adjusting weights based on valuation models or setting to zero weights for assets

that fail a screening criterion such as environmental, social, and governance cri-

teria.
9In the traditional formulation of a market order, one thinks of the limit price as ∞ if buying and as 0

if selling. The 0 for selling implicitly encodes that assets are “goods” that can always be sold at a weakly
positive price. Here, if the order is for a portfolio with both positive and negative weights, it is not auto-
matic from the order itself whether the portfolio is a “good” that should always trade at a positive price or
a “bad” that should trade at a negative price. Either way, the trader can guarantee execution by specifying
pL

i sufficiently large.
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5. General long-short strategies.

A general long-short strategy combines the previous two cases: multiple positive

and negative entries.

6. Market-making strategies.

A trader can engage in market making, whether for a single asset, a pairs trade, a

portfolio trade, or a general long-short strategy, using two orders with opposite-

signed weights and price parameters. For example, a market maker who is willing

to buy portfolio wi in full at 41.00 and sell it in full at 42.00 could use orders like

• Buy leg: weights wi , price parameters pL
i = $41.00, p H

i = $41.25

• Sell leg: weights -wi , price parameters pL
i = −$42.00, p H

i = −$41.75

3.3 Limitations of the Language

There are limitations of the language for representing trading demands.

First, trading demands are only defined at exactly the ratio of portfolio weights spec-

ified in the order. If an order specifies it wants to buy assets A and B at a ratio of 2:1, the

order contains no information about the trader’s willingness to trade at, say, a ratio of

2.2:1 or 1.8:1. This restriction relative to traditional consumer theory, where preferences

are typically defined on the whole positive orthant, is key to our method of existence

proof (below in Section 4.2).

Second, trading demands are linear within each order. In principle, we could replace

the linear trunc function with the flexibility to specify an arbitrary downward-sloping

function on the interval of prices [pL
i , p H

i ]. However, our existence proof and compu-

tational results take advantage of this linearity. We view the linearity restriction as a

less important limitation because arbitrary downward-sloping functions can be approx-

imated, if needed, with a set of linear orders.

Third, the language does not allow for indivisibilities. Most importantly, a user can-

not specify a minimum transaction quantity per batch, only a maximum. So, for exam-

ple, an order cannot be “fill or kill”, or “at least 100 shares per batch, otherwise stay out”.

That said, a user may approximate such preferences with marketable orders if prices are

sufficiently continuous.

Last, the language does not allow for in-order contingencies. This includes cases

like “buy A if the price of B is high enough” or “buy whichever of A or B gives me more
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surplus given my valuations”. This latter kind of preference expression is analyzed in De-

mange, Gale, and Sotomayor (1986) and is present in market design proposals of Klem-

perer (2010) and Milgrom (2009). As with indivisibilities, a user may approximate such

preferences with marketable orders if prices are continuous enough.

4 Market Clearing Prices and Quantities

Now we turn our attention to the exchange’s problem of finding clearing prices and

quantities.

4.1 Definition of Market Clearing

To define market clearing, we need to convert individual traders’ demand curves for

portfolios as a function of portfolio prices into a market demand curve for assets as a

function of asset prices. For each portfolio i , first replace the portfolio price pi by the

weighted vector of asset prices, using pi =wi
⊺πππ. Then, convert the demand for portfolio

units Di(wi
⊺πππ) into the demand for individual assets by multiplying by the portfolio

weights wi . Last, sum up the demand for assets across all orders i to obtain the market

net excess demand curve for assets as a function of asset prices:

D(πππ) ∶=
I

∑
i=1

Di (wi
⊺πππ ∣wi , qi , pL

i , p H
i ) wi . (3)

The function D(⋅) maps asset price vectorsπππ ∈RN to net asset quantity vectors q ∈RN . A

price vector is market clearing if each asset’s net excess demand is zero:

D(πππ) = 0. (4)

This market clearing condition defines N equations in N unknowns. At clearing pricesπππ,

order i ’s trading rate for the individual assets is given by Di(wi
⊺πππ)wi (i.e., by its demand

for portfolio units at the clearing prices times the portfolio weights).

For arbitrary, non-clearing price vectors, the quantity vector D(πππ) may have both

positive and negative components. Note that we do not enforce a constraint that prices

be nonnegative. Negative prices arise naturally in some commodity markets, such as

electricity, with limited storage and costly curtailment.
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4.2 Existence of Market Clearing Prices and Quantities

To show the existence of clearing prices, which then determine market-clearing quanti-

ties, we formulate an optimization problem by imputing to each order “as-bid” prefer-

ences which define the dollar utility value of the number of portfolio units bought, then

sum the utility functions across orders to obtain the objective function to be maximized.

An order’s demand is a linear function of prices in the range of prices where the or-

der is partially executable. Therefore, a quadratic quasilinear utility function defines

preferences. The constraints preventing overfilling or underfilling the order are linear

inequality constraints. Market clearing consists of linear equality constraints. Putting

this together results in a quadratic program—maximizing a quadratic objective function

subject to linear constraints.

Quadratic programs have been thoroughly studied and are well-understood. Given

the structure of our problem, we can use well-known results to show that unique utility-

maximizing quantities exist, and the solution implies Lagrange multipliers which corre-

spond to clearing prices. A solution to the dual problem of calculating optimal (market-

clearing) prices also exists and implies the same solution as the original (primal) prob-

lem.

Imputing utility functions to orders is a convenient mathematical modeling device.

We proceed as though orders directly represent traders’ preferences, even though, in

practice, traders submit orders strategically. Thus, our methodology does not measure

actual economic welfare and does not generate welfare results on market efficiency.

Rather, the method provides a practical approach to finding clearing prices and quanti-

ties consistent with bids.

Pseudo-Utility Let Vi(xi) denote the dollar utility of order i from a trade rate of xi in

portfolio units per second. To find Vi(xi), we first define the marginal utility function

Mi(xi) as the inverse demand curve, pi = Mi(xi), where recall the order i demand curve

is denoted by Di(pi) = xi . In words, the inverse demand curve maps order i ’s trade rate

xi ∈ [0, qi ] into prices p ∈ [pL
i , p H

i ].10 Rearranging equation (2) we have:

10For trade rates in the interval (0, qi ), the fact that the order chooses an interior quantity tells us that the
order’s as-bid marginal utility is equal to the corresponding price in the interval (pL

i , p H
i ). The same logic

extends to the boundary points 0 and qi , corresponding respectively to prices p H
i and pL

i , by assuming
as-bid utility is continuous.
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Mi(xi) ∶= p H
i −

p H
i −pL

i

qi
xi for xi ∈ [0, qi ]. (5)

The value of Mi(xi) measures marginal as-bid flow value in dollars per portfolio unit.

Utility Vi(xi), as a function of the trade rate xi , is defined as the integral of the marginal

utility function for trade rate over the interval [0, xi ]:

Vi(xi) ∶= ∫

xi

0
Mi(u) du (6)

Since the marginal value is linear in xi , the total value is quadratic and therefore strictly

concave in xi :

Vi(xi) = p H
i xi −

p H
i −pL

i

2qi
xi

2 (7)

We will think of Vi(xi) as defined for all xi ∈ R, with order specifications imposing the

constraint xi ∈ [0, qi ].11

Value Maximization Our problem of finding clearing prices is formulated as two opti-

mization problems, a primal problem of finding quantities that maximize as-bid dollar

value and a dual problem of finding prices that minimize the cost of non-clearing prices.

The first-order conditions for optimality of these two problems imply market-clearing

quantities and prices.

The exchange, acting analogously to a social planner in general equilibrium theory,

chooses a vector of execution rates for all orders x = (x1, . . . , xI) to maximize aggregate

value, defined as the sum of pseudo-utility functions across orders,

V (x) ∶=
I

∑
i=1

Vi (xi) for x ∈RI , (8)

subject to choosing quantities consistent with market clearing constraints and order ex-

ecution rate constraints:

max
x

V (x) subject to

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
I
i=0 xi wi = 0 (market clearing)

xi ∈ [0, qi ] for all i (order execution rate).
(9)

The objective function V (x) is concave because it is a sum of concave functions.

11We could equivalently think of the domain of Vi (xi ) as xi ∈ [0, qi ] or define Vi (xi ) = −∞ for xi ∉ [0, qi ].
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Indeed, since the objective function is quadratic and the constraints are linear, this

is a quadratic program. To make this quadratic structure apparent using matrix and

vector notation, let W denote the N × I matrix whose i th column is wi . Let pH denote

the column vector whose i th element is p H
i . Let D denote the I × I positive definite

diagonal matrix whose i th diagonal element is (p H
i −pL

i )/qi . Then problem in equation

(9) may be written compactly as

max
x

[x⊺pH − 1
2 x⊺D x] subject to W x = 0 and 0 ≤ x ≤ q. (10)

We first show that quantities that maximize aggregate utility exist. Then we show that

clearing prices exist by examining the dual problem to the utility maximization problem.

Theorem 1 (Existence and Uniqueness of Optimal Quantities). There exists a unique

quantity vector x∗ which solves the maximization problem in equation (10).

Proof. The problem has the following properties:

1. Compactness and convexity: The inequality constraints on trade rates define the

Cartesian product of I intervals, [0, q1]× ⋅ ⋅ ⋅ × [0, qI ], which is compact and convex. The

market-clearing conditions are linear constraints, which define the intersection of hy-

perplanes. The intersection of a compact, convex set with hyperplanes is compact and

convex. Thus, the set of vectors of trade rates x that satisfies all constraints is compact

and convex.

2. Feasibility: No trade (x = 0) generates well-defined utility for each order (Vi(0) = 0),

clears markets and is allowed on each order. No-trade is feasible.

3. Strict concavity: The objective V is strictly concave since the Hessian matrix, −D,

is negative definite.

It is a well-known principle of convex analysis that a strictly concave objective func-

tion on a non-empty compact and convex set has a unique maximizing vector x∗ (Bert-

sekas (2009, Propositions 3.1.1, 3.2.1)).

Our approach makes the problem compact by assuming that traders are not inter-

ested in trading additional quantities beyond some very favorable prices. This is like

putting upper and lower bounds on quantities and linear combinations of quantities.

To prove that clearing prices exist, we exploit the duality between the problems of

finding optimal quantities and prices. For this, we define a Lagrangian function of the
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vector of quantities x with three constraints: (1) the market clears (Wx = 0); (2) the order

execution rate is greater than or equal to zero (x ≥ 0); (3) the order execution rate is less

than or equal to the maximum (x ≤ q). In vector notation, the Lagrangian is defined by

L(x,πππ,λλλ,µµµ) ∶= x⊺pH − 1
2 x⊺D x−πππ⊺W x+µµµ⊺x+λλλ⊺(q−x). (11)

Since the multipliers associated with the market-clearing equality constraint have the

economic interpretation of market prices for assets, we use the notationπππ = (π1, . . . ,πN)⊺

for these multipliers. Two vectors of order-execution-rate multipliers, µµµ = (µ1, . . . ,µI)
⊺

andλλλ = (λ1, . . . ,λI)
⊺, are associated with inequality constraints on order execution rates,

with two constraints for each order.

The dual problem associated with the primal problem of maximizing aggregate util-

ity in equation (10), is then defined by

Ĝ(πππ,λλλ,µµµ) ∶=max
x

L(x,πππ,λλλ,µµµ) for πππ ∈RN , µµµ ≥ 0, λλλ ≥ 0. (12)

The dual problem is a minimization problem with infimum g∗ defined by

g∗ ∶= inf
πππ,λλλ,µµµ

Ĝ(πππ,λλλ,µµµ) subject to πππ ∈RN , µµµ ≥ 0, λλλ ≥ 0. (13)

The dual problem in equation (13) is formulated as an infimum rather than a minimum

because we have not yet shown that there exists a solution (πππ∗,λλλ∗,µµµ∗) which attains the

infimum.

Theorem 2 (Existence of clearing prices). There exists at least one optimal solution (πππ∗,λλλ∗,µµµ∗)
to the dual problem in equation (13). The solutions x∗ and (πππ∗,λλλ∗,µµµ∗) are a primal-dual

pair which satisfies the strict duality relationship

g∗ =V (x∗). (14)

Proof of Theorem 2. The primal problem has the following properties:

1. Strict concavity: The objective function V (x) is strictly concave.

2. Finite solution: The primal objective is the sum of a finite number of concave

quadratic functions. Since each quadratic function is bounded above, the solution to

the primal problem is bounded above.

3. Linear constraints: The minimum execution rate constraint x ≥ 0, the maximum
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execution rate constraint x ≤ q, and the market clearing constraint W x = 0 are all linear.

4. Feasibility: No trade (x = 0) is feasible because it clears the market and is allowed

on each order.12

It is a standard result from convex programming that a concave primal problem, a fi-

nite supremum on the primal problem, feasibility, and linear constraints guarantee that

a solution to the dual problem exists and has the same optimal value as the supremum

to the primal problem even if a solution to the primal problem does not exist as it does

in our problem (Bertsekas (2009, Proposition 5.3.4)). Since Theorem 1 guarantees that

a solution to the primal problem does exist, the solution to the primal problem has the

same value as the solution to the dual problem.

There are three Lagrange multipliers in this problem: πππ, λλλ, and µµµ. The multiplier on

the market clearing conditionπππ is the vector of prices for all assets. The other multipliers

λλλ andµµµ ensure that orders are not underfilled ( x < 0 ) or overfilled (x > q).

Theorem 2 does not guarantee that clearing prices are unique. The set of clearing

prices is convex and may be unbounded. A trivial example occurs when all orders are

buy orders for individual assets, and there are no sell orders. Then any sufficiently high

price clears the market with zero trade. There may also be cases where the clearing price

is not unique even when trade occurs. A trivial example occurs when there is one buy

order and one sell order for the same asset (or portfolio) with the same quantities q , and

the buyer’s lower limit price exceeds the absolute value of the seller’s lower limit price. In

this case, there is an interval of prices where both orders are fully executable. We discuss

a tie-breaking rule to pick a unique price in the next section.

5 Computation

In this section, we study the computational feasibility of flow trading. The objective is

to provide a proof of concept, finding market-clearing solutions in less than a second

for a reasonably difficult problem with 500 assets and 100,000 orders, using an ordinary

workstation. We also study how computation time varies with the number of assets and

orders and parameters that affect how orders are generated. Section 5.1 proposes a com-

12Feasibility does not require a strict interior point (Slater’s condition) because the constraints are linear
in this problem (linear constraint qualification).
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putational methodology. Section 5.2 explores computational performance in a simula-

tion environment.

5.1 Methodology

Gradient Method For economists, Walrasian tatonnement is an intuitive approach for

calculating market-clearing prices. An auctioneer announces tentative prices, and traders

respond with their quantities. The auctioneer then adjusts prices in the direction pro-

portional to net excess demand. The process continues until the market clears.

Tatonnement is equivalent to applying the gradient optimization method to an ob-

jective function of prices whose first-order conditions correspond to market clearing. In

our setting, such a function can be obtained as

G(πππ) ∶= inf
λλλ,µµµ

Ĝ(πππ,λλλ,µµµ) subject to µµµ ≥ 0, λλλ ≥ 0, (15)

where Ĝ(πππ,λλλ,µµµ) is given by equation (12). Theorem 2 implies that this function’s first

order conditions, G ′(πππ) = 0, correspond to market clearing.

Since the gains function has a piecewise-linear derivative, it is continuously differ-

entiable, and the derivative satisfies a Lipschitz condition.13 These conditions assure

that the gradient method converges (Nesterov (2004, Corollary 2.1.2, p. 70)). While the

guaranteed convergence rate is much faster than for the traditional general-equilibrium

theory problems discussed by Scarf and Hansen (1973),14 it is too slow for our purpose.

Reducing the error by a factor of one million may require approximately one million iter-

ations, a prohibitively large number in our setting, where we need to solve for prices fre-

quently throughout the trading day (as opposed to a single high-stakes allocation prob-

lem in a combinatorial auction).

5.1.1 Interior Point Method

We solve the minimization problem using an interior point method for quadratic pro-

gramming. The literature shows that interior point methods are computationally more

13There is a Lipschitz constant L such that ∣∇G(πππ+∆πππ)−∇G(πππ)∣ < L∣∆πππ∣ for allπππ and all ∆πππ.
14More modern work in computer science has focused on the complexity of computing Brouwer and

Kakutani fixed points (Daskalakis, Goldberg, and Papadimitriou (2009); Budish, Cachon, Kessler, and Oth-
man (2017)) and supports the claim that computing competitive equilibrium prices can be computation-
ally difficult.
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efficient than the more intuitive gradient method, both theoretically (see Nesterov (2004,

Chapter 4); Bertsekas (2009), Boyd and Vandenberghe (2004)) and in practice (Gondzio

(2012)).15

Exchange as a Small Market Maker Theoretically, interior point methods work better

when the starting points are interior points, a feasible allocation on the interior of the

constraint set. Such an allocation clears the market and strictly satisfies the inequality

constraints (0 < x < q). In our setting, the natural candidate for an interior point is no-

trade (x = 0), which satisfies market clearing but is not an interior point because x = 0 lies

on the boundary, not the interior, of the feasible set. There is no other natural choice for

an interior point.

To ensure an interior point, we let the exchange act as a small market maker for every

asset. Specifically, the exchange submits a linear demand curve for each asset n,

εn(π0n −πn), (16)

where εn is the slope, and π0n is a base price below which the exchange buys and above

which it sells. Here, εn can be a small positive number such that the exchange does little

trading. The strategy can be implemented by placing two flow orders for each asset: one

order to buy at prices belowπ0n and the other to sell at prices aboveπ0n , with a generous

upper bound on the maximum quantity traded by the exchange.16 With the exchange as

a small market maker, existence of an interior point is assured. For example, pick any x

such that 0 < x < q. Then the exchange can soak up any uncleared quantities to clear the

market.

Allowing modest exchange trading has two other benefits. First, it resolves the tiebreaker

15For interior point methods, the maximum number of iterations has an upper bound proportional
to O(log(1/ε)), where ε is the proportion by which the error is reduced (Nesterov (2004) Theorem 3.1).
For example, reducing error by proportion 0.000001 (one-millionth) is O(log(1,000,000)) ≈O(13.8). For
gradient methods, the upper bound is proportional to O(1/ε) or O(1/ε2) depending on the structure of
the problem (Gondzio (2012)).

16The buy order can be implemented with an upper limit of pH = π0n , a lower limit pL such that (pH −
pL) is a large positive number, a portfolio weight vector with weight 1 on asset n and weight 0 on all other
assets, and a quantity parameter of q = εn(pH − pL). The sell order can be implemented analogously
but with pH = −π0n . One very conservative way to set the lower limit price is to choose pL such that
εn(pH − pL) is the nth element of the matrix-vector product abs(W)q, where abs(W) is the element-
by-element absolute value of the portfolio weight matrix W. This guarantees that the exchange can, in
principle, take the other side of any combined quantities of all other market participants (satisfying 0 <
x < q), even for extreme prices diverging towards plus or minus infinity.
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problem, which arises when the convex set of market-clearing prices contains more

than one point (as we know is otherwise possible from Theorem 2). Since the exchange

has an active order for every asset at every potentially market-clearing price vector, mar-

ket prices are chosen uniquely for all assets when multiple prices would otherwise be

possible. For example, if π0n is set at the previous clearing price for asset n, then the ex-

change’s small trading demand will tend to break ties in favor of the prices closest to the

previous prices. Second, the exchange can absorb uncleared quantities due to rounding

error and inexact algorithm convergence to clearing prices, even when the algorithm

has converged to a target tolerance.

Solving the KKT Conditions We use a primal-dual interior-point method to solve the

Karush–Kuhn–Tucker (KKT) conditions. This approach finds market-clearing prices and

quantities utilizing information about both quantities from the primal problem and

prices and multipliers from the dual problem.

From here on, we redefine pH , pL , D, W, q, and x to include the exchange’s orders.

Then the results from Section 4 hold, and it is straightforward to show that a solution to

the KKT conditions clears the market. Further, since the exchange has an active order at

any market clearing price, the solution is unique.

Theorem 3 (Karush–Kuhn–Tucker (KKT) Conditions with Exchange Trading). Any so-

lution of the KKT conditions in equations (17)–(20) for quantities x∗ ∶= (x∗1 , . . . , x∗I ) and

multipliers (πππ∗,λλλ∗,µµµ∗) is a solution to both the primal problem and dual problem:

W x∗ = 0, 0 ≤ x∗ ≤ q, (Primal Feasibility) (17)

πππ∗ ∈RN , λλλ∗ ≥ 0, µµµ∗ ≥ 0, (Dual Feasibility) (18)

pH −Dx∗−W⊺πππ∗+µµµ∗−λλλ∗ = 0, (Primal Optimality) (19)

λλλ∗ ⋅ (q−x∗) = 0, µµµ∗ ⋅x∗ = 0, (Complementary Slackness) (20)

where the dot product in equation (20) represents element-by-element multiplication of

vectors. With exchange trading defined in equation (16), there exists a unique solution to

the KKT conditions.

Proof of Theorem 3. Existence is a straightforward consequence of Theorems 1 and 2,

which imply that a unique optimal primal solution x∗ exists and some optimal dual
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solution (πππ∗,λλλ∗,µµµ∗) exists, and these solutions form a primal-dual pair with the same

optimized value. Uniqueness follows from the upper bound on the quantity traded by

the exchange being generous enough to insure that the exchange has a partially exe-

cutable order for every asset at market clearing prices. If market-clearing prices were

not unique, then any change in the price of any asset would change the aggregate quan-

tity demanded, which implies multiple market-clearing quantities. Since the quantities

are unique from Theorem 1, prices must therefore also be unique.

Instead of solving these conditions directly, the interior point method first modifies

the problem by replacing the complementary slackness conditions in equation (20) with

a set of constraints parameterized by a scalar ν̄ > 0:

λλλ∗ ⋅ (q−x∗) = ν̄1, µµµ∗ ⋅x∗ = ν̄1. (21)

Then in the limit as ν̄ → 0, the sequence of solutions to the modified KKT conditions

satisfies the original KKT conditions in Theorem 3.

The modified complementary slackness conditions in equation (21) imply that a so-

lution to the modified KKT conditions satisfies the constraints with strict inequality:

0 < x < q. Exchange trading plays a role in guaranteeing the existence of such a solu-

tion for any ν̄ > 0.

Implementation Details Our algorithmic strategy solves the modified KKT conditions

in equations (17), (18), (19), and (21) iteratively by starting with an initial guess for x, πππ,

µµµ,λλλ satisfying 0 < x < q (interior point),µµµ > 0,λλλ > 0 (positive multipliers).17 To find search

directions (∆x, ∆πππ, ∆µµµ, and ∆λλλ), we first substitute x+∆x,πππ+∆πππ,µµµ+∆µµµ, andλλλ+∆λλλ for

x, πππ, µµµ, and λλλ, respectively into the system of equations representing the modified KKT

conditions with the value of ν̄ set to 0. Then we linearize the system of equations by

dropping the second order terms (∆x ⋅∆µµµ and ∆x ⋅∆λλλ in the modified complementary

17Our own Python implementation of the interior point methodology follows the algorithm described
by Vandenberghe (2010) for the CVXOPT package and is tailored to our specific quadratic program (which
has an invertible diagonal matrix D and simple “Euclidean cone” constraints 0 ≤ x ≤ q). One version of
the algorithm is implemented on cpus using the Python packages numpy and scipy. Another version is
implemented on both cpu and gpu using the Python package Pytorch. Results are reported for the Pytorch
implementation on the gpu, which was three times faster than either cpu version. Our implementation
code will be posted publicly upon publication and is available immediately to interested readers upon
request. The Python programming language and the CVXOPT package (not actually used) are free and
publicly available.
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slackness conditions in equation (21)) and solve the resulting linear system for ∆x, ∆πππ,

∆µµµ, and ∆λλλ.18 The solution vectors are then multiplied by a scalar α (with 0 < α ≤ 1) to

ensure that the best guess for the next iteration x+α∆x,πππ+α∆πππ,µµµ+α∆µµµ,λλλ+α∆λλλ is such

that x remains an interior point and the multipliers remain strictly positive, with ν̄ even-

tually approaching zero. Since the KKT conditions are essentially first-order conditions,

the linearized approximation is a version of Newton’s method.

On each iteration, the linear system is solved in the following way. The multipliers

∆µµµ and ∆λλλ are expressed as functions of ∆x, easy invertibility of the diagonal matrix

D allows x to be expressed as a simple function of πππ, and substituting the solution for

x into the market clearing condition reduces the problem to solving an N ×N positive

definite system for a price update toπππ, for which a Cholesky decomposition is used.19 A

mathematical derivation of the algorithmic details is in Appendix B.

We can think of the positive definite matrix to be decomposed as a “liquidity ma-

trix” measuring the marginal change in quantities for each asset as a function of small

changes in prices for all assets, taking into account both demand for individual assets

and demand for portfolios. This liquidity matrix changes with each iteration because it

is constructed by implicitly assigning weights to each order based on changing values of

multipliers µµµ and λλλ. The weights are close to zero when the multipliers push the order

execution rate xi close to the boundary of the interval [0, qi ], and closer to one if the ex-

ecution rate xi implied by the multipliers is closer to the midpoint of the interval [0, qi ].

The order is expected to be relevant for price discovery at the margin when it is partially

executable, which, in the context of an interior point method, means that the weight

implied by the multipliers is relatively closer to one than to zero. A new Cholesky de-

composition is needed on each iteration to incorporate updated weights from the most

recent iteration into the calculation of the new search direction.

When there is great liquidity for some portfolios (e.g., the market index) but little liq-

uidity for some other portfolios (e.g., thinly traded individual assets), the matrix to be

18The KKT system is nonlinear in the unknowns πππ, x, µµµ, and λλλ only because the complementary slack-
ness condition in equation (21) involves element-by-element multiplication of x by µµµ and λλλ. For µµµ (and
analogously for λλλ), linearizing (x+∆x) ⋅ (µµµ+∆µµµ) sets the second-order term term ∆x ⋅∆µµµ to a vector of
zeros.

19As in the original KKT system, the revised KKT system is nonlinear because the revised complemen-
tary slackness condition involves element-by-element multiplication of x+∆x by µµµ+∆µµµ and λλλ+∆λλλ. To
correct for the error created by dropping the second-order terms ∆µµµ ⋅∆λλλ, we solve the linear system a
second time on each iteration (using the same Cholesky decomposition), including a correction term de-
scribed by Mehrotra (1992) in the second solution.
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decomposed is poorly conditioned and nearly singular. By supplying small amounts of

liquidity to all assets, exchange trading improves the condition number of this matrix,

which makes the Cholesky decomposition unlikely to fail. When there is insufficient ex-

change trading to prevent the Cholesky decomposition from failing, the algorithm regu-

larizes the matrix by adding small quantities to the diagonal. While this makes the algo-

rithm more robust, it may increase the number of iterations by making search directions

less accurate.

5.2 Results

5.2.1 Simulating the Order Book

We simulate an order book with parameter settings designed to make the problem realis-

tic and algorithmically difficult. Our goal is to provide a proof of concept, demonstrating

that market clearing prices for 500 assets and 100,000 orders can be solved in less than

one second. The number 500 is chosen based on the number of stocks in the S&P 500

index. The number 100,000 is chosen somewhat arbitrarily. After examining the base

case, we show how the numbers of assets and orders affect computation times. We also

test the robustness of the algorithm by examining how computation times vary when

parameters values are much larger or smaller than base-case settings.

Of the 100,000 orders, 50,000 are for individual assets (an average of 100 orders for

each asset), 25,000 are for various index portfolios, and 25,000 are for pairs trades. There

are an additional 1000 exchange orders, one buy order and one sell order for each asset,

making 101,000 orders altogether. The exchange offers a schedule with the tiny slope of

0.01. It is designed to do minimal trading, buying one dollar’s worth of an asset when its

price falls by one percent.

To generate a mix of assets – some very high volume some thinly traded, we create

great variation in the number of orders across assets and the size of orders within assets.

The expected number of orders for each asset and the size of orders for a given asset

both follow lognormal distributions with large log-standard-deviations of 1.7 and 1.5,

respectively.20 This results in a few individual assets having a large number of orders

and some assets having zero or very few orders. Within assets, a few orders are expected

to be gigantic and most are expected to be relatively tiny. Mean order size is defined

20A log-standard-deviation of 1.7 means that a plus-or-minus one standard deviation change in the log
of a random quantity multiplies or divides the random quantity by e1.7 ≈ 5.47.
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using the market microstructure invariance hypothesis of Kyle and Obizhaeva (2016),

which makes mean order size for an individual asset or index proportional to the cube

root of expected dollar volume for the individual asset or index.

While theoretically investors can choose from infinitely many different portfolios by

combining any of the 500 assets, we restrict portfolios to various index portfolios and

arbitrary pairs trades. For index portfolios, we construct value-weighted and equal-

weighted portfolios of the market index, “size” indices, and “industry” indices. “Size”

is defined as expected dollar volume.21 “Industry” indexes are defined by arbitrarily

grouping stocks so that the number of stocks and distribution of size do not vary across

industries. Trading in indexes is dominated by the value-weighted market index. Pairs

trades randomly buy either an asset or an index portfolio and sell an equal expected

dollar value of another random asset or index.

Limit prices are distributed around an arbitrary initial price, normalized to $100 per

share or index unit. This is also the price at which the exchange trades a zero quan-

tity.22 For individual assets and index portfolios, the midpoint between upper and lower

limit prices has a lognormal distribution centered at $97.00 for buy orders and $103.00

for sell orders, with an arbitrary log-standard-deviation of 10%. The expected differ-

ence between upper and lower prices is assumed to be very small, one basis point (i.e.,

p H
i = 100.005, pL

i = 99.995), with a very large log-variance of 2.0. Orders have equal prob-

abilities of buying or selling the given individual asset or portfolio.

These assumptions are realistic because market indexes (like the S&P 500 E-mini

futures contract or the SPDR ETF) have greater liquidity than any single stock, long-

short trading is widely practiced, and liquidity and trading volume vary enormously

across stocks. These assumptions also make the problem algorithmically difficult be-

cause huge variation in liquidity across assets and portfolios makes the liquidity ma-

trix very poorly conditioned, and high-volume index trading volume makes the liquidity

matrix highly non-diagonal. Further, huge variation in order size and the tiny difference

between upper and lower limit prices stress the algorithm by making the liquidity matrix

change a great deal when prices change by small amounts. The small difference between

upper and lower limit prices is intentionally unrealistic since theory implies that market

21The simulation environment has no concept of market capitalization from which to define size. If it is
assumed that all stocks have the same expected turnover rate of unmodeled market capitalization, then
market capitalization is perfectly correlated with expected dollar volume.

22The simulations are structured so that normalizing prices scales quantities and prices but does not
otherwise affect the algorithm (e.g., dollar values of all orders and trades are unaffected by this scaling).
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Base Low High
Description

Number of assets 500 . .
Number of orders 100000 . .
Slope of exchange’s demand schedule (shares traded per dollar price change at $100/share) 0.0100 . .
Fraction of orders for individual assets 0.5000 0.0500 0.9500
Fraction of orders for indexes among orders for portfolios 0.5000 0.0500 0.9500
Number of size indexes 5 2 50
Number of industry indexes 10 2 50
Probability an index order is a market index order 0.8000 0.0500 0.9500
Probability a size or industry index order is a size index order 0.5000 0.0500 0.9500
Probability a mkt index order is an EW mkt index order 0.0625 0.0500 0.9500
Probability a size index order is an EW size index order 0.2500 0.0500 0.9500
Probability an industry index order is an EW industry index order 0.2500 0.0500 0.9500
Standard deviation of expected number of orders across assets 1.7000 0.1000 3.0000
Standard deviation of order size given asset 1.5000 0.1000 3.0000
Standard deviation of upper limit price as fraction of initial price 0.1000 0.0100 1.0000
Mean deviation of upper limit price as fraction of initial price standard deviation 0.3000 0.0100 1.0000
Mean difference between upper and lower limit prices (basis points) 1.0000 0.0100 100.0000
Standard deviation of difference between upper and lower limit prices 2.0000 0.1000 3.0000
Fraction buy orders for indexes and assets 0.5000 0.1000 0.9500

Table 2: Parameters for simulating an order book.

participants should supply more constant liquidity.

In addition to the base-case simulation parameters described above, we also test the

robustness of the algorithm by using low and high values of parameters. Table 2 lists

base-case, low, and high values for the parameters. Further details on the simulation

methodology are provided in Appendix A.

5.2.2 Computation Outcomes

When performed on an ordinary office workstation—an AMD Ryzen Threadripper 3960X

processor, 24 cores running at 3.8GHz, and 128GB of memory running at 3600MHz; RTZ

2070 gpu at 1710 MHz with 8 GB of RAM—computation of market-clearing prices and

quantities takes about 0.1451 seconds (median) in the baseline scenario with 500 assets

and 100,000 orders. Our results are obtained using the gpu and two cores.23 Uncleared

quantities are near zero, equal to 8.7 dollars per trillion dollars of total volume.24

The amount of exchange trading is small. On average, the exchange trades 3.2 dollars

per million dollars of trading volume. Across 51 repetitions, the maximum, minimum,

23Computation times do not change much when more cores are used. This is probably because easily
parallelized computations are done on the gpu, and other calculations do not benefit from using multiple
cores. The computation times are stable across 401 repetitions, with a maximum of 0.1603 seconds, a
minimum of 0.1365 seconds, and a standard deviation of 0.0058 seconds.

24All calculations are done with 64-bit floating-point numbers. If calculations are done with 32-bit
floating-point numbers, computation time is more than twice as fast, but uncleared quantities are typ-
ically an unacceptably large $100 per million.
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Figure 2: Computation Time As a Function of the Number of Orders and the Number of Assets

Panel A varies the number of orders. Panel B varies the number of assets. In both panels, all

other parameters are set to their baseline values. Each dot represents one simulated order book,

and there are approximately 500 simulations in each panel. The small discontinuity in Panel B

around 600 assets likely is a hardware artifact, such as the need to use RAM rather than cache for

sufficiently large problems.

and standard deviation of exchange trading are 5.99, 2.32, and 0.73 dollars per million

dollars. In a dynamic market, the exchange can avoid accumulating significant invento-

ries by adjusting its base prices over time to liquidate existing inventories.

Exchange trading, while small, has a significant effect on the cross-sectional stan-

dard deviation of market-clearing prices for assets with thin order books. Without ex-

change trading, assets with thin order books have essentially indeterminate prices. The

algorithm chooses arbitrarily among multiple clearing prices. This drives the standard

deviation of price changes from the baseline price to an immense value of 14.4 million

percent. The small amount of exchange trading used in the simulations brings the stan-

dard deviation of prices down to a much more reasonable 14.19%, a reasonable mag-

nitude similar to the 10% standard deviation of the midpoint limit price on orders for

individual assets. In practice, we would expect market-making firms to provide liquidity

in thinly traded stocks and stabilize prices, possibly with a wide spread.

Figure 2 describes how computation times vary with the number of assets and the

number of orders. In the first panel, as the number of orders increases from 100,000

to 1,000,000 and 10,000,000, while keeping the number of assets constant, computation
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times increase from 0.1451 to 0.5639 and 4.67 seconds. The computation time crosses

one second with approximately 1,930,000 orders. When the number of orders is large,

computation time is approximately proportional to the number of orders. In the second

panel, as the number of assets increases from 500 to 2,000 and 10,000, again keeping

the number of orders constant, computation times increase to 1.1021 and 56.3 seconds.

The computation time crosses one second with 1,800 assets and ten seconds with 5,200

assets. The increased computation times when the number of assets increase are mainly

due to the computation costs of constructing the liquidity matrix input to the Cholesky

decomposition and the Cholesky decomposition itself (which is an O(N 3) algorithm in

the number of assets).25

For robustness, we alter each parameter’s value to the minimum and the maximum

of a wide range, as described in Table 2, while keeping the number of orders, the number

of assets, and the slope of exchange trading constant. Computation times remain of

the same order of magnitude (0.1159 to 0.2655 seconds compared to 0.1459 seconds

in the baseline setting). Most parameters have a modest effect on computation times

except for the standard deviation of order size and the fraction of buy orders. These two

parameters affect the balance of the supply and demand of the order book. Changing

the standard deviation of order size from 1.5 to 3 increases computation time to 0.2078

seconds. Changing the fraction of buy orders from 0.5 to 0.1 increases computation time

to 0.2344 seconds. By making the order book more asymmetric, extreme values for these

parameters make the problem more difficult to solve.

While having little effect on computation times, the difference between upper and

lower limit prices significantly affects the quality of market clearing. The low mean dif-

ference scenario (0.01 basis points) and the high standard deviation scenario (3.00) in-

crease the amount of uncleared quantities from 8.7 dollars per trillion to 120 and 160

dollars per trillion. Further making the mean difference ten times smaller makes un-

cleared quantities ten times larger. This occurs because as the upper and lower limit

prices become closer (p H
i → pL

i ), the upper limit price also becomes closer to the market-

clearing price (p H
i → pi ) for all executable orders. The ratio between the two differences

((p H
i −pi)/(p H

i −pL
i )), each of which approaches zero, becomes numerically inaccurate.

This makes the flow demand in equation (2), which depends on the ratio—and thus

25Both figures are almost flat initially. With a small number of orders or assets, the overhead associated
with the Python interpreter becomes a significant fraction of computation times. When there are only
10 assets and 20 orders, the computation time is about 0.0552 seconds, which we believe is likely a good
estimate of the overhead associated with the Python interpreter.
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market-clearing quantities—inaccurate and increases uncleared quantities.

Finally, we consider an extreme scenario by setting all parameters simultaneously

to those that increase computation times (either the minimum or the maximum of the

range depending on the parameters). In this case, the computation time increases to

0.4291 seconds, approximately a factor of three relative to the base case and still below

half a second, and the uncleared quantities increase to 1.5 dollars per million of total

volume. The unclear quantities increase approximately by 100,000 fold relative to the

baseline. This mainly results from reducing the mean and increasing the standard de-

viation of the differences between the upper and lower limit prices and increasing the

standard deviation of the order size, each of which increases uncleared quantities by 100

fold by making the demand curve close to a step function and increasing the rounding

errors from inferring quantities from prices. Still, uncleared quantities are a small frac-

tion of the total volume, representing numerical errors from extreme parameter values

as opposed to revealing economic issues (Theorems 1 and 2 show that market clearing

prices and quantities exist). The analysis suggests that computation times are not sensi-

tive to the parameter values used for the order book construction, while market clearing

accuracy is sensitive to order book parameters, especially the difference between the

two limit prices. While 1.5 dollars per million is still arguably small as an amount of in-

accuracy, it may be prudent to adopt a lower bound for the difference between the upper

and lower limit prices, such as one basis point in the baseline case.

Discussion Overall, market-clearing allocations are computed quickly and accurately

with minimal trading by the exchange. Computational times grow with the number of

orders and assets, as expected. Reassuringly, the growth in the number of orders ap-

pears to be linear, and problems with several thousand assets can be solved in about

one to ten seconds on an ordinary workstation. We interpret these results as an initial

computational proof of concept for the flow trading market design.

In a production environment, we expect more powerful computers and more refined

algorithms will make it easier to calculate market-clearing allocations with even greater

speed. Future algorithms may be better able to take advantage of parallel processing

across more cores and take advantage of advances in quadratic programming and sparse

matrix multiplications, which play key roles in our computation and are active areas of

research in computer science.
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6 Microfoundation for Portfolio Orders

Flow orders specify demand for a user-specified portfolio as a function of the price of

that portfolio. Although such portfolio orders are more general than limit orders, this

language is still restrictive. In general, a market participant’s demands depend on the

complete vector of asset prices, not just on the price of the portfolio. This section pro-

vides a microfoundation for our approach to expressing trading demands.

6.1 The Static CARA-Normal Framework

The CARA-normal model (Grossman (1976), Grossman and Stiglitz (1980), Admati (1985)),

in which agents have constant absolute risk aversion (CARA) and asset returns are joint-

normally distributed, is widely used in economics and finance. We use the CARA-normal

model to study trading portfolio orders. The model is static, so there is no distinction

between trading in quantities and flows. Models that study dynamic strategic trading in

the CARA-normal environment have found that trading gradually over time is optimal

to manage price impact (Vayanos (1999); Du and Zhu (2017); Kyle, Obizhaeva, and Wang

(2018), Sannikov and Skrzypacz (2016)). While these models focus on the case of a single

risky asset, we conjecture that the insights would carry over to the trade of portfolios.

Assume there are N risky assets and one safe asset, whose return is normalized to

one. Assume there is a single trader who subjectively believes that the risky assets’ pay-

offs, denoted by vector v, are joint-normally distributed with mean m and variance-

covariance matrix ΣΣΣ. The trader has CARA preferences with risk aversion parameter A.

There are no wealth effects with CARA preferences, so the trader’s wealth is set to zero

for simplicity.

Initially, consider the trader’s optimization problem given a fixed, known set of prices—

letπππ denote the vector of prices for the N risky assets. Assume that the trader is a perfect

competitor who cannot affect these prices with their trading; we will discuss the case

where the trader has price impact shortly. The trader’s portfolio optimization problem,

given her beliefs, risk preferences, and prices, is given by:

max
ωωω

E[−exp−A (v−πππ)⊺ωωω] , (22)

Joint normality allows us to transform the above into the quadratic optimization
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problem:

max
ωωω

[(m−πππ)⊺ωωω− 1
2 Aωωω⊺ΣΣΣωωω] . (23)

The first order condition implies that the optimal portfolio is given by:

ωωω∗ = (AΣΣΣ)−1(m−πππ). (24)

Observe that the optimal demand for each asset depends on its covariance with the

other assets, via the associated row of the inverse covariance matrix, and the entire vec-

tor m−πππ. Thus, as is well known, demand for each asset generally depends on the prices

of all assets.

Implementing the Optimum with Portfolio Orders If the pricesπππ are known and fixed,

the trader can implement their optimum as defined in equation (24) with a single portfo-

lio order with portfolio weights wi and quantity parameter Qmax
i such that Qmax

i wi =ωωω
∗.

This single portfolio order would specify pricing parameters such that it is fully exe-

cutable at the known prices.

What if the trader does not know the asset prices? This might reflect the environ-

ment in which prices are rapidly fluctuating over time. Next, we show that traders can

implement their optimum according to equation (24) with portfolio orders, without any

knowledge of prices. To do this, we need to rotate the asset space such that independent

portfolios span it.

Since the variance-covariance matrixΣΣΣ is positive semidefinite, its singular value de-

composition has a form

ΣΣΣ =U∆∆∆U⊺, (25)

where U is an orthonormal matrix, and ∆∆∆ is a diagonal matrix with nonnegative ele-

ments. Let K ≤ N denote the rank of ΣΣΣ, let δi denote the i th nonzero diagonal entry of

∆∆∆, and let ui denote the corresponding column of U.26 Then we have

ΣΣΣ−1 =
K

∑
i=1

1

δi
ui ui

⊺. (26)

26When K is strictly less than N (i.e., the matrix ΣΣΣ is positive semidefinite but not positive definite), we
can use the pseudo-inverse instead of the inverse to define the demand function.
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Using this, we can express the optimal portfolio in equation (24) as

ωωω∗ =
K

∑
i=1

(
ui
⊺m−ui

⊺πππ
Aδi

) ui , (27)

which is a combination of demand schedules for portfolios. Here, u1, . . . ,uK are port-

folios of assets, whereas in equation (24) demand was expressed in terms of individual

assets. Since the portfolios are independent of one another and there is no wealth effect,

the optimal portfolio chooses the demand for each of them separately as if in a single-

asset model.27 That is, the optimal demand for the i th portfolio is given by

1

Aδi
(ui

⊺m−ui
⊺πππ), (28)

where δi , ui
⊺m, and ui

⊺πππ correspond to the variance, the expected payoff, and the price

of the portfolio ui . Since the demand for each portfolio only depends on the portfolio’s

price, traders can achieve the optimal trade in equation (24) by utilizing K orders for

portfolios where each order is a function of that portfolio’s price.

Recall, we require orders’ demands for portfolios to be downward sloping. Since the

optimal demand for each portfolio in equation (27) is decreasing in the portfolio’s price,

the demand is indeed downward sloping.

The theorem below summarizes the results.

Theorem 4. Consider a static CARA-normal framework in which a trader believes that

the variance-covariance matrix of the asset payoffs has rank K . Then the trader’s optimal

portfolio (equation (24)) can be represented as the sum of K downward-sloping demand

schedules for portfolios, each of which depends only on that portfolio’s price (equation

(27)).

Practical Implementation We can decompose the expected utility from the optimal

portfolio into the contribution of each rotated asset. Substituting the optimal portfolio

in equation (27) into equation (23), and some algebraic manipulations (see details in

27Observe that in equation (24), if the covariance matrixΣΣΣ is diagonal, then the demand coefficients on
each of the individual assets are scalars, so the optimal portfolio can choose the demand for each asset
separately as if in a single-asset model too.
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Appendix A), allows us to express the expected utility from trading at pricesπππ as

K

∑
i=1

1

2A
(

ui
⊺m−ui

⊺πππ
√
δi

)

2

. (29)

This formula shows that the benefit of each portfolio is determined by its squared Sharpe

ratio as perceived by the trader.28 In practice, traders may select a few portfolios, which

they perceive to have a sufficiently high Sharpe ratio (more precisely, its absolute value),

and choose to trade only those portfolios rather than all K portfolios.

Price Impact and Strategic Trading Thus far, we have assumed that traders are per-

fect competitors, behaving as if they have no price impact. In practice, trades can move

prices. Many institutional traders dedicate considerable time and resources to manag-

ing their price impact. Now we show that flow orders can still be used to implement the

optimal portfolio when traders behave strategically, considering their price impact.

Following the literature (for example, Kyle (1989); Malamud and Rostek (2017)), we

assume that traders believe that their price impact is linear in the quantity they trade.

We further assume that the matrix of price impact is positive semidefinite.29 That is, for

each trader, there is an N ×N positive semidefinite matrixΛΛΛ, such that

πππ =πππ0+ΛΛΛωωω, (30)

where πππ0 is the vector of hypothetical prices that would prevail if the trader were not to

trade, and the nth row ofΛΛΛ corresponds to the marginal impact of trading assets 1 to N

on the price of asset n. With a slight abuse of notation, we use the demand scheduleωωω

to also refer to the actual quantities that a trader trades at given prices.

With price impact, the trader’s optimal strategy is a slight modification of the com-

petitive solution in equation (24), given by

ωωω∗ = (AΣΣΣ+ΛΛΛ)−1(m−πππ). (31)

28Recall, the Sharpe ratio refers to the risk premium (i.e., the expected return minus risk-free rate) di-
vided by the standard deviation. Here, the risk-free rate is zero since the safe asset’s return is normalized
to one.

29Malamud and Rostek (2017) show that when the variance-covariance matrix is the same for all traders,
each trader’s equilibrium price impact matrix is proportional to the variance-covariance matrix, which
implies that all price impact matrices are positive semidefinite. It is left for future study to determine
under what conditions the price impact matrix is positive semidefinite in a more general setting.
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Since the sum of two positive semidefinite matrices is also positive semidefinite, AΣΣΣ+ΛΛΛ

is positive semidefinite. Thus, we can use singular value decomposition to rotate the as-

set space such that independent portfolios span it. Then the same logic as above implies

that the optimal portfolio can be implemented by combining portfolio orders that only

depend on the portfolio’s price. The number of required portfolio orders corresponds to

the rank of AΣΣΣ+ΛΛΛ.

Theorem 5. Consider a static CARA-normal framework in which a trader believes that

her price impact is linear and positive semidefinite (equation (30)). Then the strategic

trader’s optimal portfolio (equation (31)) can be represented as the sum of downward-

sloping demand schedules for portfolios, each of which depends only on that portfolio’s

price.

Recall, when proving the existence and uniqueness of market-clearing quantities in

Section 4, we treat orders as if they represent traders’ true valuations. This simplification

does not imply that we can infer traders’ valuations from their orders. Strategic trading

is an important reason that there often is a gap between true and as-bid valuations.

6.2 Approximations for General Preferences and Limitations

The logic above extends to any strictly concave, twice continuously differentiable, quasi-

linear utility function over assets provided asset payoffs are joint normally distributed.

To see why this is the case, recall the two CARA preference properties we use: 1) no

wealth effects and 2) strict concavity.

First, with no wealth effects, a trader’s optimal demand for each asset does not de-

pend on the prices of other assets in the case where assets’ payoffs are independent of

one another. If the assets have correlated, joint normal payoffs, we can, as shown above,

rotate the asset space such that it is spanned by a set of portfolios whose payoffs are in-

dependent of one another. Thus, any quasilinear preference implies no wealth effects,

and we can use the independent portfolios such that the trader’s optimal demand for

each portfolio only depends on that portfolio’s price.

Second, strict concavity implies that the optimal demand for any portfolio must be

downward sloping. This is crucial since we require demands for portfolios to be down-

ward sloping in the portfolio’s price. Although the optimal strategy may not be linear

for any strictly concave, twice continuously differentiable, quasilinear preference, we
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can approximate the optimal strategy by combining multiple linear downward sloping

schedules.

However, portfolio orders will be unable to approximate the optimal portfolio of ev-

ery concave utility function. First, with wealth effects, the demand for an independent

portfolio may still depend on the prices of other portfolios and may also increase in that

portfolio’s price. Second, with asymmetric information, the prices of other portfolios

may be useful to learn about the payoff of a given portfolio, even if the payoffs of the

two portfolios are independently distributed. In this case, the optimal demand for an

independent portfolio may again depend on the prices of other portfolios.

7 Implementation and Policy Issues

This section discusses several practical implementation and policy issues related to the

flow trading market design.

Batch Interval What is the optimal batch interval? The best choice likely depends on

the asset class. We discuss three considerations: computation limits, factors that fa-

vor a shorter interval subject to computation constraints, and an open question about

whether a longer interval is desirable for thinly traded assets.

The batch interval must be long enough to compute prices and trades. Our simula-

tions suggest that a batch interval on the order of one second may be sufficient for many

asset classes. That said, the computational simulations serve as a proof-of-concept

rather than as a final word. There are many reasons why a real-world implementation

could be meaningfully faster than our implementation. There is also the possibility that

real-world markets may take longer to compute for reasons not anticipated by our sim-

ulation environment.

Next, three factors favor a batch interval as short as computationally feasible. First,

a fast batch interval makes trading smoother—that is, smaller quantities are traded per

batch. Smoother trading can be helpful to traders with complex dynamic trading strate-

gies, who may wish to adjust their orders over time as information evolves. At the same

time, traders with simpler strategies can leave their orders be, without much adjustment

over time, whether the batch interval is long or short. Second, if the assets in question

are traded in fragmented markets, and some of those markets are continuous, then the

interaction of a discrete-time market with a continuous-time market is likely simplest
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if the discrete-time interval is short (Budish, Lee, and Shim (2018)). Third, informa-

tion policy is more robust with a shorter batch interval, as there will be less pressure for

within-batch information dissemination.

Last, we acknowledge the open question of whether a longer batch interval is desir-

able for more thinly traded assets. This is a common intuition among regulators and

practitioners (see, e.g., U.S. Securities and Exchange Commission (2019a,b), Schwartz

(2012), and references therein). Du and Zhu (2017) provide some theoretical grounding

for this intuition. A hard conceptual question is how to think about the batch interval for

markets consisting of heavily traded and thinly traded assets. For instance, the US eq-

uities market consists of about 7000 assets, some of which trade many times per second

while others trade only a few times per hour. Similarly, in many sovereign debt markets,

on-the-run assets are heavily traded while off-the-run assets are thinly traded.

Information Policy Information policy is typically discussed in terms of pre-trade and

post-trade transparency. Concerning post-trade transparency, we propose that the ex-

change publish the trading volume and clearing price of each asset promptly after the

quantities and price have been calculated. In addition, the exchange may also publish

information about the aggregate net demand curve for each asset, holding the prices of

all other assets fixed. This policy is analogous to publishing the outstanding limit order

book in continuous markets. Then traders can make inferences about the price impact

costs of their orders. The exchange would not publish information about the identity of

traders, nor would it publish individual orders, since portfolio weights may reveal trad-

ing strategies.

For pre-trade transparency, we envision that the post-trade information from the

auction at time t is the complete pre-trade information for the auction at time t +1. As

discussed by Budish, Cramton, and Shim (2015), this is the appropriate discrete-time

analog of information policy in the continuous market. In both cases, the exchange

(i) receives an order, (ii) economically processes the order, and then (iii) disseminates

information about what happened (e.g., a trade or an order book update). The difference

with discrete time is that the economic processing in (ii) occurs in discrete time, and

hence the information dissemination in (iii) occurs in discrete time as well.30

30As pointed out by Budish, Cramton, and Shim (2015), in the continuous-time market it may look like
traders can see information about the state of an asset’s order book “right now,” but that is an illusion—a
trader’s information is always as of a latency ago because it takes non-zero time for the exchange’s match-
ing engine to economically process new messages in step (ii) and to disseminate updates in step (iii).
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The reason not to disseminate additional information between batch auctions, e.g.,

about the arrival of new orders or the cancelations of outstanding orders, is that such

information could lead to gaming. For example, suppose the batch interval is one sec-

ond. A trader could submit a new order to buy a large quantity 100 milliseconds into

the batch interval with the intention to cancel that order and instead send a new order

to sell 999 milliseconds into the batch interval. In this scenario, the order to buy was

never economically binding nor economically processed by the exchange, so sending

this purposefully misleading message was costless.

We acknowledge that the pressure to disseminate information between auctions grows

with the batch interval. This is one reason why a batch interval that is as short as com-

putationally feasible may be appropriate for many asset classes. Additionally, one could

extend flow trading to include order types that are economically binding for the dura-

tion of the current auction (i.e., cannot be canceled until after the next auction), with

within-auction information disseminated about updates to this binding subset of the

order book. Professional market-making firms might deploy such orders to attract trad-

ing volume, but we view this discussion as speculative and in need of future research.

With arbitrary portfolio orders, information about the depth of the order book is in-

herently complex—there are infinitely many possible portfolios. The exchange might

publish limited depth information about a fixed list of reference portfolios, alongside

the depth information for individual assets.

Trust and Transparency Flow trading has the desirable property that all orders that are

executable at published clearing prices do in fact execute. This property allows investors

to confirm that their orders received correct execution from published prices.

By contrast, potentially executable orders in current markets do not consistently ex-

ecute when other orders execute at the same price at nearly the same time. Uncertain

execution erodes trust and market confidence, particularly among traders without state-

of-the-art speed technology, whose orders are more apt to get poorer execution.

This difference between flow trading and the current market design arises from com-

bining discrete time and continuous prices and quantities. Continuous prices and quan-

tities make it possible to execute all executable orders at a market-clearing price without

Discrete time makes more transparent that a trader’s information as of time t is the state of the order book
as of time t −∆, whether ∆ is the latency of information travel in a continuous market or the duration of
the batch interval in a discrete market. Discrete time also eliminates the arms race for speed to reduce ∆.
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any need for rationing. Discrete time makes it possible to process multiple executable

orders simultaneously in a batch process.

Fairness In traditional markets, the concept of “bid-ask spread” captures many of the

features participants complain about as unfair. When there is a minimum tick size and

the bid-ask spread is one-tick wide, buyers and sellers cannot offer price improvement

by quoting better prices between the best bid price and best offer price. Instead, buyers

and sellers queue up at the best bid and offer, where the fastest traders have the highest

priority in the queue. Slower traders perceive this as unfair. In dealer markets, dealers do

not allow customers to post limit orders to trade directly with other customers. Instead,

customers must trade with dealers in transactions where the dealer buys at the bid price

and sells at the offer price. Customers perceive that dealer markets are unfair because

dealers have privileges that customers do not have.

With flow trading, the concept of bid-ask spread is irrelevant when trade occurs be-

cause the market demand schedule for each asset is continuous and strictly downward

sloping. All trades clear at the same price. All executable orders execute. There are of

course still trading costs. Trading a larger quantity, or trading a given quantity faster,

requires offering a better price—that is, walking up the market’s supply curve if buying

or down the market’s demand curve if selling—which creates price impact. The essen-

tial difference is that a trader can trade an epsilon quantity at the market-clearing price

without any bid-ask spread. A practical interpretation of this point is that institutional

investors will have to manage their price impact, but small retail investors can trade

small quantities at the market-clearing price with negligible trading costs.

Regulatory Objectives The US Securities and Exchange Commission, which regulates

US securities markets, pursues various policy objectives, including economic efficiency,

competition, maintaining trust and confidence, and investor protection.

Flow trading is consistent with these objectives. It improves economic efficiency

by reducing wasteful expenditure on fast data feeds, communication technologies, and

trading algorithms. It does this by decreasing the arms race among traders to pick off

orders and reducing the messages needed to implement dynamic trading strategies. It

increases competition by enabling institutional investors to trade arbitrary long-short

portfolios without the need for sophisticated trading platforms. Flow trading is also

consistent with the current demand of small investors to trade fractions of shares and
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construct diversified portfolios consisting of tiny positions in many stocks. It promotes

trust and confidence in markets by trading all executable orders at the same transpar-

ent price. It protects investors from poor order execution by making quality of order

execution easy for customers to measure.

8 Conclusion

This paper has introduced a new market design for trading financial assets, such as

stocks, bonds, futures, and currencies. It combines three elements: flow orders from

Kyle and Lee (2017), frequent batch auctions from Budish, Cramton, and Shim (2015),

and a novel language for trading portfolios of assets. Technical foundations for the pro-

posed market design include existence and uniqueness results, computational results,

and microfoundations for portfolio orders.

The combination of flow orders and frequent batch auctions yields a market design

in which time is discrete, and prices and quantities are continuous. The status quo

market design has these reversed. As has been widely documented, treating time as

a continuous variable and imposing discreteness on prices and quantities causes sig-

nificant complexity, inefficiency, and rent-seeking in modern financial markets. Policy

debates on the arms race for trading speed, the proliferation of complex order types, the

importance of proprietary market data and exchange access, the cat-and-mouse game

between institutional investors and high-frequency traders, and the internalization of

retail investors’ order flow, all relate to continuous time and discrete prices and quanti-

ties.

The novel language for portfolio orders is, on the one hand, rich enough to allow

traders to directly express many important kinds of trading demands—customized ETFs,

pairs trades, general long-short strategies, general market-making strategies, all with

tunable urgency—while also allowing for guaranteed existence and uniqueness of equi-

librium prices and quantities and their fast computation. This seems a useful new point

on the frontier of language design, that is, an attractive tradeoff between expressiveness

and computability.

An open topic left for future research is the efficiency and welfare consequences of

allowing market participants to directly trade portfolios, rather than trading separately

for individual assets. We conjecture there are two main efficiency benefits. First, allow-

ing market participants to directly trade portfolios should reduce trading costs, such as
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the costs of trade execution and intermediation. This includes costs paid indirectly for

portfolio trade execution through ETF fees. Second, portfolio orders make it more ef-

ficient for sophisticated financial market participants to endogenously link prices and

liquidity provision for correlated assets. Portfolio orders enable, for example, Bertrand

competition on the cost of executing a Buy A, Sell B pairs trade, which is impossible un-

der the status quo market design. This should improve the efficiency of price discovery

and reduce arbitrage rents. Another interesting dimension of the problem is how allow-

ing participants to trade portfolios affects strategic issues around demand- and supply-

reduction to manage price impact. In models with fully-contingent trading demands,

these effects can go in either direction (Rostek and Yoon (2021), Wittwer (2021)).
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Appendix

A Simulation Details

In the base case, orders for index portfolios are randomly assigned to the six categories

with corresponding probabilities in parentheses: the valued-weighted market index (75%),

the equal-weighted market index (5%), five value-weighted size indices (7.5%), five equally-

weighted size indices (2.5%), ten value-weighted industry indices (7.5%), and ten equal-

weighted industry indices (2.5%). The numbers here are chosen somewhat arbitrarily.

We later vary the probabilities to study how they may affect computation times.31 Fi-

nally, each order for individual assets and indexes has an equal probability of being buy

or sell.

For each asset, we draw a random number from a lognormal distribution with mean

of 1 and log-standard deviation of 1.7. Dividing these numbers by the sum of all realiza-

tions across 500 assets, we generate the probability that a given order is allocated to that

asset. Then for each order for individual assets, we pick an asset from a multinomial dis-

tribution with the chosen probabilities. The probability multiplied by the total number

of orders for assets (50,000) is the expected number of orders for that asset.

Following the market microstructure invariance hypothesis of Kyle and Obizhaeva

(2016), the mean order size is set proportionally to the square root of the expected num-

ber of orders for that asset. The proportionality constant is chosen to make the aggregate

expected order volume from individual stocks equal to the arbitrary scaling constant of

$10 million per batch using arbitrary expected ex-ante prices of $100 per share. Then

the standard deviation of the order size equals
√

exp(1.52)−1 multiplied by the mean,

approximately two times the mean.

For index portfolios, the expected number of orders for each size index is the same,

and the expected number of orders for each industry index is the same. The size of the

index orders is determined by multiplying the square root of the expected number of

31To allow conveniently varying these probabilities, we generate them from five parameters: the proba-
bility that an index order is for either the equal-weighted or the value-weighted market index; the proba-
bility that a non-market index order is for a size index portfolio; the probability that a market index order
is for the equal-weighted market index portfolio; and the probability that a size (industry) index order
is for an equal-weighted size (industry) index portfolio. The five parameters and the restriction that the
probabilities sum to one determine all six probabilities. We let each of the five parameters vary from 5%
to 95%.

53



orders by the same proportionality factor used for individual orders. Since orders for

the value-weighted market index are much larger and more numerous than orders for

individual stocks, the overall value of the market index is primarily determined by these

index orders. For pairs trades, each individual asset leg is generated randomly in the

same manner as orders for the asset or portfolio. The dollar size of the larger leg is then

truncated to match the dollar size of the smaller leg, again using expected ex-ante prices.

B Solving KKT Conditions

The system of equations representing the modified KKT conditions (19), and (17), (21)

is (18), can be rearranged and written32

pH −Dx−W⊺πππ+µµµ−λλλ = 0, (32)

W x = 0, (33)

λλλ ⋅ (q−x) = ν̄1, µµµ ⋅x = ν̄1 (34)

λλλ ≥ 0, µµµ ≥ 0, 0 ≤ x ≤ q, (35)

In this system, the exogenous order book is represented by the matrix of portfolio

weights W, the vector of maximum portfolio quantities q, the vector of upper limit prices

pH , and the diagonal matrix D.33 The goal is to find values for the traded portfolio quan-

tities x, prices for assets (multipiers for market clearing constraints) πππ, and multipliers

for order quantity constraints µµµ and λλλ which solve this system for a very small positive

value of the interior point parameter ν̄, which is given by

ν̄ ∶= 1
2m (λλλ⊺(q−x)+µµµ⊺x) . (36)

The algorithm starts with a large initial guess for ν̄ and an initial guesses for x,πππ, µµµ, and

λλλ, then calculates revised guesses iteratively, preserving the interior-point and nonneg-

32The actual algorithm used in the simulations replaces q−x and x in the complementary slackness con-
ditions with slack variable sµ and sλ, writes the approximation to the complementary slackness condition
as µµµ ⋅ sµ =λλλ ⋅ sλ = ν̄ ⋅1, then solves for the slack variable along with the other variables. The slack variables
quickly converge to their correct values sµ ∶= x and sλ ∶= q− x and will always attain their correct values
if initialized correctly. This approach is essentially equivalent to the slightly simplified exposition given
here.

33The lower limit prices pL are easily obtained from pH , q, and D but are not needed for calculations.
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ativity constraints (35). On a given iteration, the problem is linearized by substituting

x+∆x,πππ+∆πππ,µµµ+∆µµµ, andλλλ+∆λλλ for x,πππ,µµµ, andλλλ, respectively into this system of equa-

tions. This results in a system of equations which is linear in ∆x, ∆πππ, ∆µµµ, and ∆λλλ, except

for the non-linear terms ∆µµµ ⋅∆x and ∆λλλ ⋅∆x. Since these quadratic terms are unknown,

they are replaced with guesses εεε∆µµµ⋅∆x and εεε∆λλλ⋅∆x, whose values are discussed in the para-

graph after equation (48). Since the goal is to solve the system for small and smaller

versions of ν̄, the value ν̄ is replaced by a smaller quantity εν̄. The theory of interior

point methods is based on reducing ν̄ gradually iteration by iteration. In practice, the

algorithm converges faster if large reductions are attempted. Here we set εν̄ = 0 to try to

reduce ν̄ substantially on each iteration.

Placing terms linear in∆x,∆πππ,∆µµµ, and∆λλλon the left side of equations, the linearized

system can be written

D∆x−W⊺∆πππ+∆µµµ−∆λλλ = −rx , where rx ∶=pH −Dx−W⊺πππ+µµµ−λλλ, (37)

W∆x = −rπ, where rπ ∶=Wx (38)

x ⋅∆µµµ+µµµ ⋅∆x = −rµ where rµ ∶=µµµ ⋅x+εεε∆µµµ⋅∆x−εν̄1, (39)

(q−x) ⋅∆λλλ−λλλ ⋅∆x = −rλ, where rλ ∶=λλλ ⋅ (q−x)+εεε∆λλλ⋅∆x−εν̄1. (40)

Now define some notation. For any vector z, let z−1 denote the vector of element-by-

element reciprocals of elements of z. For any matrix Z, let diagvec(Z) denote the vector

on its diagonal. For any vector z, let diagmat(z) denote the diagonal matrix with z on its

diagonal. Note that for a diagonal matrix Z, we can write the matrix-vector product as

an element-by-element vector-vector product: If z ∶= diagvec(Z), then Zv = z ⋅v.

Solve equations (39) and (40) for ∆µµµ and ∆λλλ:

∆µµµ = x−1 ⋅ (−rµ−µµµ ⋅∆x) (41)

∆λλλ = (q−x)−1 ⋅ (−rλ+λλλ ⋅∆x). (42)

Plug these solutions for ∆µµµ and ∆λλλ into equation (37), putting terms linear in ∆µµµ and

∆λλλ on the left side:

D∆x−W⊺∆πππ+x−1 ⋅ (−rµ−µµµ ⋅∆x)−(q−x)−1 ⋅ (−rλ−λλλ ⋅∆x) = −rx . (43)
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Define

d = diagmat(D), ωωω ∶= (d+x−1 ⋅µµµ+(q−x)−1 ⋅λλλ)
−1

, ΩΩΩ = diagmat(ωωω). (44)

Solve equation (43) for ∆x to obtain

∆x =ωωω ⋅ (W⊺∆πππ−r) , where r ∶= rx +x−1 ⋅rµ+(q−x)−1 ⋅rλ+x ⋅rµ. (45)

Define the “liquidity matrix” L as

L =WΩΩΩW⊺. (46)

While the liquidity matrix L is theoretically positive definite (due to the exchange trading

every asset), it may be numerically singular (due to tiny exchange trading). To regularize

this matrix, add a vector of small positive values, denoted εεεL, to the diagonal. Substitute

this solution for ∆x into the market clearing condition (38) (W∆x = −rπ) to obtain

(L+diagmat(εεεL)) ∆πππ = −rπ+Wωωω−r. (47)

Since the regularized liquidity matrix L+diagmat(εεεL) is positive definite and presum-

ably not numerically singular, the above equation can be solved for πππ using a Cholesky

decomposition. Solutions for ∆x, ∆µµµ, and ∆λλλ can be obtained from the previous equa-

tions.

Now these solutions may not be such that the updated vectors x+∆x,πππ+∆πππ,µµµ+∆µµµ,

λλλ+∆λλλ satisfy the constraints (35) requiring that x be an interior point and multipliers be

positive. To insure that the constraints hold, truncate the solutions by a factor ᾱ defined

by

ᾱ ∶= 0.99sup[α ∶ 0 ≤α ≤ 1,0 ≤ x+α∆x ≤ q,µµµ+α∆µµµ ≥ 0,λλλ+α∆λλλ ≥ 0] , (48)

The factor 0.99 insures that the updated solutions x+ᾱ∆x,πππ+ᾱ∆πππ,µµµ+ᾱ∆µµµ, andλλλ+ᾱ∆λλλ

satisfy inequality constraints as strict inequalities.

Now consider how to choose the guesses εεε∆µµµ⋅∆x and εεε∆λλλ⋅∆x. On each iteration, the so-

lution for ∆x, ∆πππ, ∆µµµ, and ∆λλλ is calculated twice reusing the same Cholesky decompo-

sition. On the first try, the guesses are εεε∆µµµ⋅∆x = εεε∆λλλ⋅∆x = 0. On the second try, the solution

is polished using the results from the first try as guesses (Mehrotra (1992)):

εεε∆µµµ⋅∆x = ᾱ
2∆µµµ ⋅∆x, εεε∆λλλ⋅∆x = ᾱ

2∆λλλ ⋅∆x. (49)
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The initial guess for x is rather arbitrary, involving large values for the multipliers µµµ

andλλλ.

Computationally, calculation of the matrix L = WΩΩΩW⊺ and its Cholesky decomposi-

tion are the most costly parts of the algorithm. The next most costly calculations are sev-

eral matrix-vector products involving the sparse portfolio weight matrix W. The remain-

ing calculations are relatively less costly element-by-element vector products, scalar

products, and inner products.

To make calculations involving W more computationally efficient, the matrix W is

expressed as the product of two matrices. The first matrix is a vector of weights defining

portfolios. It concatenates an identity matrix (defining “weights” for individual assets)

with another matrix whose columns define weights for index portfolios. The second

matrix has one column for each order, with one non-zero weight defining the individ-

ual asset or portfolio traded by orders for individual assets or portfolios and with two

non-zero weights for the two portfolios involved in pairs trades. Since both of these ma-

trices are sparse, there is computational savings from not forming the matrix W explicitly

but instead performing matrix multiplications involving W in a “matrix-free” manner by

multiplying by the two matrices sequentially. We use an ad hoc algorithm exploiting

the specific structure of these matrices. For example, with 20,000 orders for the mar-

ket portfolio of 500 assets in the base-case scenario, the entire vector of 500 portfolio

weights defining the market portfolio is only multiplied once rather than 20,000 times,

as would be the case if the matrix W were calculated explicitly. Measuring the effect of

this approach on computational efficiency in different order books with more compli-

cated kinds of portfolio orders is an interesting area for future research.

C Proofs

Derivation of Equation (29)(29)(29) Recall, from equation (23), the expected utility from the

optimal portfolio is

(m−πππ)⊺ωωω∗− 1
2 Aωωω∗⊺ΣΣΣωωω∗. (50)

Equalizing the marginal benefit (the expected return) and the marginal cost (risk), the

optimal portfolio in equation (27) is essentially the ratio of the expected return to risk.
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Substituting the optimal portfolio in equation (27) into the first term above, we have

(m−πππ)⊺ωωω∗ = (m−πππ)⊺
K

∑
i=1

ui (
ui
⊺m−ui

⊺πππ
A δi

)

=
K

∑
i=1

(m⊺ui −πππ
⊺ui)(

ui
⊺m−ui

⊺πππ
A δi

)

=
K

∑
i=1

(ui
⊺m−ui

⊺πππ)2

A δi
=

1

A

K

∑
i=1

(
ui
⊺m−ui

⊺πππ
√
δi

)

2

.

(51)

Notice, ui
⊺m−ui

⊺πππ is a scalar and thus symmetric. Thus, the total expected return from

the optimal portfolio is represented by the sum of squared Sharpe ratios of rotated port-

folios, divided by risk aversion.

Now, we want to do the same thing to the second term in the expected utility.

1
2 Aωωω∗⊺ΣΣΣωωω∗ (52)

Here, sinceΣΣΣ =U∆∆∆U⊺, and∆∆∆ is a diagonal matrix, we can express it as

ΣΣΣ =U∆∆∆U⊺ =
K

∑
i=1

δui ui
⊺. (53)

Also, U is an orthonormal matrix, which implies that UU⊺ = I, an identity matrix. That

is, ui
⊺ui = 1,∀i and u j

⊺ui = 0,∀ j ≠ i . Then substituting the optimal portfolio, we have

1
2 Aωωω∗⊺ΣΣΣωωω∗ = 1

2 Aωωω∗⊺(
K

∑
i=1

δui ui
⊺)(

K

∑
i=1

ui (
ui
⊺(m−πππ)

Aδi
))

= 1
2 Aωωω∗⊺

K

∑
i=1

δi ui (
ui
⊺(m−πππ)

Aδi
)

= 1
2ωωω

∗⊺ K

∑
i=1

ui (ui
⊺(m−πππ))

= 1
2 (

K

∑
i=1

(
ui
⊺(m−πππ)

Aδi
)ui

⊺)(
K

∑
i=1

ui (ui
⊺(m−πππ)))

=
1

2A

K

∑
i=1

(
ui
⊺(m−πππ)
√
δi

)

2

.

(54)

Thus, similar to the total expected return, the total risk from the optimal portfolio is
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represented as the sum of squared Sharpe ratios of rotated portfolios, except that it is

divided by 2 times the risk aversion. Thus, the total risk is exactly half of the total ex-

pected return, where half comes from the fact that the risk is a quadratic function of the

portfolio, while the return is linear.

Finally, combining equations (51) and (54) yields equation (29).
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