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Abstract
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can lower this threshold because (i) it intensifies competition among speculators, which re-
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1. Introduction

Asset managers devote considerable effort to find new investment signals (predictors). To this

end, they have made massive investments to leverage progress in information technologies,

namely the considerable growth in available data (data abundance) and the steep decline in the

cost of data processing, due to progress in computing power (see Nordhaus (2015)). For instance,

asset managers increasingly buy so called “alternative data sets”, including credit/debit card

data, app usage data, satellite images, social media, web traffic data, etc. and use computer-

based methods to extract predictors of asset payoffs from these data.1

Data abundance and improvements in computing power are related but distinct phenomena.

For instance, satellite images or web traffic data can provide more accurate predictors of future

firms’ earnings.2 However, they do not per se reduce the cost of processing data for obtaining

these predictors. Thus, understanding the effects of data abundance require models of infor-

mation acquisition in which the effects of an increase in the amount of available data can be

analyzed holding the cost of data processing constant (and vice versa). In this paper, we propose

a model of this type and we show that the effects of data abundance and progress in computing

power on equilibrium outcomes in financial markets (e.g., the dispersion of speculators’ trading

profits and price informativeness) are distinct.

Our model features a continuum of risk averse speculators. In the first stage (the“exploration

stage”), each speculator optimally scours available data to find a predictor of the payoff of a

risky asset. In the second stage (the “trading stage”), each speculator observes the realization

of her predictor and optimally chooses her trading strategy. We formalize the trading stage as

a standard rational expectations model (similar to Vives (1995)). The novelty of our model

(and its implications) stems from the exploration stage. Here, instead of following the standard

approach (e.g., Grossman and Stiglitz (1980) or Verrecchia (1982)), whereby speculators obtain

a predictor of a given precision in exchange of a payment, we explicitly model the search for a

predictor as a sequential process and we analyze how the optimal search strategy depends on

(i) the cost of exploration and (ii) the amount of data available for exploration.

1Marenzi (2017) estimates that asset managers have spent more than 4 bio in alternative data in 2017 (see
also “Asset managers double spending in new data in hunt for edge”, Financial Times, May 9, 2018.. Abis (2018)
finds that quantitative funds (using computer-driven models to analyze large datasets) have quadrupled in size
from 1999 to 2015 and that their growth has been more than twofold that of discretionary funds. Moreover,
Grennan and Michaely (2019) find that 57% of the FinTechs in their sample specialize in producing investment
signals using artificial intelligence.

2See Katona et al. (2019) and Zhu (2019) for evidence that aggregated signals from alternative data (e.g.,
consumer browsing-data or satellite images) have predictive power for firms’ future earnings.



We model the search for predictors as follows. Predictors differ in their signal-to-noise

ratios (“quality”), whose distribution is exogenous. The amount of available data determines

the quality of the most informative predictor (the data frontier), denoted τmax. The least

informative predictor is uninformative. Given this distribution, each speculator simultaneously

and independently explores (“mines”) the data. Each new exploration costs c and returns a

predictor whose quality is drawn from the distribution of predictors’ quality. After obtaining a

predictor, a speculator can decide either to explore the data further, to possibly obtain an even

better predictor, or to trade on her latest predictor.3

As a motivation for this modeling approach, consider asset managers using accounting vari-

ables to forecast future stock earnings. There are many ways to combine these variables to

obtain predictors. For instance, using 240 accounting variables from firms’ financial statements,

Yan and Zheng (2017) build more than 18, 000 trading signals and find that many of these

signals can be used to build trading strategies with significant abnormal returns (even after

accounting for the risk of data snooping). The data mining cost, c, can be viewed as the labor

cost of considering a particular combination (a predictor), designing a trading strategy based on

this predictor, backtesting it, and thinking about possible economic stories for why the strategy

works. After obtaining a predictor, each manager can decide to start trading on it or to keep

searching for another, more accurate, predictor.

New datasets enable speculators to use new variables to forecast asset payoffs and should

therefore push back the data frontier, τmax.4 Thus, in the baseline version of our model, we

study the effect of data abundance by analyzing how an increase in τmax affects equilibrium

outcomes. As for greater computing power, it reduces the cost of exploring a new dataset.5

Thus, we study the effect of greater computing power by considering the effect of a decrease in

c on equilibrium outcomes.

In equilibrium, each speculator’s optimal search strategy follows a stopping rule: She stops

3In our model, after finding a predictor, speculators perfectly observe its quality. Thus, we focus on how
speculators optimally mine the data, not on the risk of false discoveries associated with data mining, as is often
emphasized by financial economists (see Harvey (2017)).

4For instance, Katona et al. (2019) find that combining satellite images of parking lots of U.S. retailers from
two distinct data providers improve the accuracy of the forecasts of these firms’ quartely earnings based on these
images.

5For instance, an increase in computing power reduces the time costs of finding predictors. Brogaard and
Zareei (2019) use a genetic algorithm approach to select technical trading rules. They note that “the average
time needed to find the optimum trading rules for a diversified portfolio of ten NYSE/AMEX volatility assets for
the 40 year sample using a computer with an Intel® Core(TM) CPU i7-2600 and 16 GM RAM is 459.29 days
(11,022.97 hours).” For one year it takes approximately 11.48 days.” They conclude that their analysis would
not be possible without the considerable increase in computing power in the last 20 years.
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searching for a predictor after finding one whose quality (signal-to-noise ratio) exceeds an en-

dogenous threshold, denoted τ∗ (we refer to such a predictor as being “satisficing”). This

threshold is such that the speculator’s expected utility of trading on a predictor of quality τ∗

is just equal to her expected utility of searching for another predictor. The latter reflects the

prospect of obtaining a larger expected trading profit by finding a predictor of higher quality

deflated by the total expected cost of search to find such a predictor the per-exploration cost,

c times the expected number of explorations required to find a predictor with a quality higher

than τ∗). All speculators use the same stopping rule because they are ex-ante identical (same

preferences, search cost etc.). However, as explorations’ outcomes are random, speculators find

and trade on predictors of different quality. Thus, in equilibrium, (i) only predictors of suffi-

ciently high quality are used for trading and (ii) speculators endogenously exploit predictors of

different quality. Specifically, the quality of predictors used in equilibrium ranges from τ∗ (the

least informative predictor used in equilibrium) to τmax (most informative).

Greater computing power induces speculators to adopt a more stringent stopping rule in

equilibrium, i.e., a decrease in c raises τ∗. Indeed, a decrease in the per-exploration cost, c,

directly reduces the total expected cost of launching a new exploration after finding a predictor.

Hence, it raises the value of searching for another predictor after finding one and therefore it

induces speculators to be more demanding for the quality, τ∗, of the least informative predictor

used in equilibrium. One indirect effect of this behavior is that, on average, speculators trade

more aggressively on their signal (we call this the “competition effect”) because they face less

uncertainty on the asset payoff since their predictors are better on average. As a result, price

informativeness increases. This indirect effect of a decrease in the per exploration cost damp-

ens its direct positive effect on the value of searching for a better predictor after finding one.

However, it is never strong enough to fully offset the decrease in the total expected search cost

due to a decrease in c.

The effect of pushing back the data frontier (an increase in τmax) on the optimal stopping

rule is more subtle because it directly affects the value of searching for another predictor after

finding one in two opposite directions. One the one hand, it raises this value for two reasons.

First, holding the stopping rule constant, it enlarges the range of satisficing predictors, which

raises the probability that each exploration is successful. This effect reduces the total expected

cost of search. Second, holding price informativeness constant, it increases the expected utility

of trading on a satisficing predictor due to the prospect of finding even more informative predic-
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tors (the “hidden gold nugget effect”). However, an increase in the quality of the best predictor

has also a direct positive effect on price informativeness because it raises the average quality of

predictors and therefore the average aggressiveness with which speculators exploit their signals

(intuitively, those with the most informative signals exploit them very aggressively). This com-

petition effect reduces the value of searching for predictors. We show that it always dominates

the other effects when τmax is high enough. When this happens, a push back of the data frontier

leads speculators to follow a less stringent stopping rule in their search for predictors. Thus,

the model implies an inverse U-shape relationship between the quality of the least informative

predictor used in equilibrium (τ∗) and data abundance.

In the baseline model, data abundance increases the likelihood of finding a satisficing pre-

dictor because it pushes back the data frontier while leaving unchanged the odds of finding

no predictor. In reality, it can also lead to a “needle in the haystack” problem by making it

more difficult to identify truly informative datasets. To account for this possibility, we extend

our baseline model by assuming that each exploration returns an informative predictor with

probability α < 1 (in the baseline model, α = 1) and analyze the “needle in the haystack”

problem by considering the effects of a drop in α. Such a drop reduces the chance of finding

a satisficing predictor in a given exploration and therefore it raises the total expected cost of

search for speculators. For this reason, it leads speculators to be less demanding for the quality

of the least informative predictor, τ∗, for the same reasons as an increase in the per exploration

cost does.

In sum, the model highlights two channels through which data abundance can reduce the

quality of the least informative predictor used in equilibrium: (i) It reduces the trading value

of predictors by intensifying competition among speculators (the competition effect) and (ii) it

increases the total expected cost of search, even though it does not change per exploration cost

(“needle in the haystack effect”).

The model suggests several ways to test the differing implications of the various facets of

progress in information technologies (a reduction in c, an increase in τmax, and a decrease in α).

The most direct way maybe consists in estimating the quality of predictors used by speculators

(e.g., fund managers). This could be done by running a time-series regression of a speculator’s

position in one asset on the return of this asset (e.g., using quarterly data). The coefficient of

this regression is a measure of the speculator’s stock picking ability and it is a proxy for the

quality of her predictor. It could therefore be used to rank speculators according to their stock
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picking ability. Our model predicts that improvements in computing power (a decrease in c)

should increase the stock picking ability of speculators in the lowest rank (a proxy for τ∗) while

data abundance (an increase in τmax, or a decrease in α) can have the opposite effects.

Our second set of predictions is about asset price informativeness. Our model predicts that

greater computing power improves price informativeness because it leads speculators to be more

demanding for the quality of their predictors.6 In contrast, the effect of data abundance on asset

price informativeness is more complex. On the one hand, a push back the data frontier (as in the

baseline version of the model) always improves price informativeness. Indeed, in this case, the

average quality of predictors increases because, in equilibrium, the potential drop in the quality

of the least informative predictor is always more than offset by the increase in the quality of the

most informative predictor. In contrast, as the needle in the haystack problem becomes more

acute (a drop in α), price informativeness drops because speculators adopt a less demanding

stopping rule for their predictors and therefore the average quality of predictors drops.

These results suggest that the effects of progress in information technologies on asset price

informativeness are likely to be ambiguous as this progress triggered both a growth in computing

power and available data. Consistent with this implication, empirical studies find that the

evolution of stock price informativeness over the long run has been ambiguous. For instance

Bai et al. (2016) find that the price stocks in the SP500 has become more informative since 1960

while Farboodi et al. (2019) find the opposite patterns for all stocks, except for large growth

stocks. Interestingly, Zhu (2019) finds that the introduction of satellite images and consumer

transactions has a positive effect on stock price informativeness. This finding is consistent with

our model as, arguably, access to satellite images and consumer transactions data should allow

investors to build even more accurate predictors of future earnings (an increase in τmax).

Our third set of predictions regards effects of computing power and data abundance on

trading profits (excess returns) and holdings for speculators (e.g., mutual funds). The model

predicts an inverse U-shape relationship between speculators’ average trading profits and com-

puting power. Indeed, greater computing power raises the average quality of the predictors used

in equilibrium and therefore price informativeness. The first effect raises speculators’ expected

trading profit while the second reduces it. The former dominates if and only if c is large enough.

6In line with this prediction, Gao and Huang (2019) find that the introduction of the EDGAR system in
the U.S. (which allows investors to have internet access to electronic filings by firms) had a positive effects on
measures of price efficiency. One possible reason, as argued by Gao and Huang (2019), is that the EDGAR system
reduced the cost of accessing data (a component of exploration cost) for investors.
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An improvement in the data frontier has the same effect for the same reasons. In contrast, an

intensification of the needle in the haystack problem operates in the opposite direction (there is

U-shape relationship between α and speculators’ expected profit) because its effects are similar

to that of an increase in c. Moreover, an increase in computing power always reduces the dis-

persion of trading profits among speculators while data abundance can increase it. Finally, we

show that greater computing power or an improvement in the data frontier reduce the pairwise

correlation in speculators’ trades (or the average pairwise correlation across all speculators)

while a drop in the proportion of informative datasets (α) has the opposite effect.

Our paper contributes to the large literature on informed trading with endogenous informa-

tion acquisition (e.g., Grossman and Stiglitz (1980), Verrecchia (1982); see Veldkamp (2011) for

a survey). This literature often takes a reduced-form approach to model the cost of acquiring

a signal of given precision. For instance, Verrecchia (1982) (and several authors) assumes that

this cost is a convex function of the precision of the signal. The learning technology in our

model is very different. Indeed, speculators do not directly choose the precision of their signal.

Rather they partially control the distribution from which this precision is drawn through the

choice of their stopping rule and effectively pay a larger total expected cost to obtain a higher

precision on average (by choosing a more stringent stopping rule). Moreover, this specification

is not assumed but micro-founded by an optimal search model.7 As explained previously, this

approach gives us a way to analyze separately the effects of greater computing power (a decrease

in the cost of processing data) and data abundance.

Our paper is also related to the recent literature analyzing the economic effects of progress in

information technologies (see, Veldkamp and Chung (2020) for a review) and more specifically

theoretical papers analyzing the effects of these technologies for the production of financial

information (e.g., Dugast and Foucault (2018), Farboodi and Veldkamp (2019), or Shyang Huang

and Yang (2020)). These papers usually analyze this progress as a decrease in the cost of

processing information. In contrast, our model focuses on another dimension of this progress,

namely the abundance of new data. We show that the effects of these two dimensions on the

7Han and Sangiorgi (2018) considers a model in which agents can choose the number of signals about a
variable drawn, with replacement, from an urn. Each draw is costly in their model. They show that this way of
modeling information acquisition provides a micro-foundation for set-ups in which (i) agents receive a signal with
an additive common and idiosyncratic noise, (ii) the precision of each agent signal is increasing and concave in
the amount invested but (iii) the precision of the idiosyncratic component of each signal is increasing and convex
signal in this amount. Their model of information acquisition does not allow for sequential search (the decision to
draw another signal cannot be contingent on the outcome of past draws) and they do not relate agents’ expected
payoff to their trading decision in the market for an asset.
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incentive to produce financial information are distinct and we derive several implications that

should allow empiricists to test whether this distinction is important empirically.

2. Model

We consider the market for a risky asset populated with a unit mass continuum of risk averse

(CARA) speculators, a risk neutral and competitive market maker, and noise traders. The

payoff of the asset, ω, is realized in period 2 and is normally distributed with mean zero and

variance σ2. Speculators search for predictors of the asset payoff in period 0 (the “exploration

stage”). Then, in period 1 (the “trading stage”), they observe the realization of these predictors

and can trade on them in the market for the risky asset. We now describe these two stages in

details.

The exploration stage. In period 0, each speculator i searches for a predictor of the asset

payoff, ω. There is a continuum of potential predictors. A predictor sθ is characterized by its

type θ and is such that:

sθ = cos(θ)ω + sin(θ)εθ, (1)

where θ ∈ [0, π/2] and εθs are normally and independently distributed with mean zero and

variance σ2. Moreover, εθ is independent from ω. Let τθ ≡ ( cos2(θ)
sin2(θ) ) = cot2(θ) denote the signal-

to-noise ratio for a predictor with type θ. We refer to this ratio as the “quality” of a predictor.8

The quality of a predictor is inversely related to its type, θ and unrelated to the risk of the

asset, σ2, because Var(εθ) = Var(ω) = σ2. Without this assumption, an increase in the risk of

the asset would artificially increase the quality of all predictors.

We assume that predictors’s types, θ, are distributed according to the density φ(.) on
[
0, π2

]
.

Speculators can discover the types of predictors in period 0 through a sequential search process.

Each search round corresponds to a new exploration (“mining”) of available data to obtain a

new predictor. Each exploration costs c and returns a predictor with type θ drawn from φ(.)

on
[
θ, π2

]
with probability α ≤ 1.9 With probability αProb(θ < θ) + (1 − α), the exploration

8Observe that the predictor sθ is equivalent (in terms of informativeness) to the predictor ŝθ = ω +
(cot(θ))−1εθ, whose precision is τθ/σ

2. Thus, a predictor of high quality is a predictor with high precision.
9For concreteness, one can interpret one exploration as running regressions of the asset payoff (e.g., stock

earnings) on various variables (or combinations thereof) from a particular data set (e.g., financial statements or

satellite images of retailers’ parking lots). The theoretical R2 of a regression of ω on sθ (i.e., 1− V ar(ω|sθ)
V ar(ω) ) is equal

to cos(θ). Thus, the higher the quality of a predictor, the higher the R2 of a regression of the asset payoff on the
predictor. In other words, searching for predictors of high quality in the model is the same thing as searching for
predictors with high R2s.
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is unsuccessful. After each exploration, a speculator can decide to (i) stop searching and trade

in period 1 on the predictor she just found (in which case, she learns the realization, sθ, of

her predictor in period 1) or (ii) start a new exploration in the hope of finding an even better

predictor. We assume that there is no limit on the number of explorations.

Parameter θ is the type of the best possible predictor that can be found given existing data.

We refer to this parameter as being the data frontier. As explained in the introduction, data

abundance should allow speculators to build even more informative predictors. This effect is

captured in the model by a push back of the data frontier, i.e., a decrease in θ. For instance,

the possibility for speculators to use satellite images of parking lots at Walmart combined with

more traditional sources of information (e.g., financial statements) should allow investors to

find more precise predictors of future earnings for Walmart. Data abundance might also create

a needle in the haystack problem. New datasets open the possibility of obtaining even better

predictors than in the past but this requires exploring these datasets first, at the risk of finding

that they are useless. This problem becomes more acute as the diversity of datasets increases.10

This effect is captured in the model by considering the effect of a decrease in α. In sum, we shall

analyze the effect of data abundance by considering (separately) the effect of a decrease in θ

and α on equilibrium outcomes. Finally, parameter c represents the cost of exploring a specific

dataset to identify a predictor. Greater computing power reduces this cost. For instance, with

more powerful computers, one can explore more datasets in a fixed amount of time. So the time

cost of data mining is smaller. Thus, we will analyze the effect of progress in computing power

by considering the effect of a decrease in c on the equilibrium.

We focus on equilibria in which each speculator follows an optimal stopping rule θ∗
i . That is,

speculator i stops searching for new predictors once she finds a predictor with type θ ≤ θ < θ∗
i

(a predictor of sufficiently high quality in the feasible range). We denote by Λ(θ∗
i ; θ, α) the

likelihood of this event (the probability of success) for speculator i in a given search round.

That is:

Λ(θ∗
i ; θ, α) ≡ α× Prob(θ ∈ [θ, θ∗

i ]) = α×
∫ θ∗i

θ
φ(θ)dθ.

Thus, a decrease in θ raises the likelihood of finding a predictor in a given exploration, holding α

10See for instance “The quant fund investing in humans not algorithms” (AlphaVille, Financial Times, De-
cember 6, 2017), reporting discussions with a manager from TwoSigma noting that: “Data are noise. Drawing a
tradable signal from that noise, meanwhile, takes work, since the signal is continuously evolving [...] Crucially,
Duncombe added, there’s qualitative data decay going on too. Back in the day, star managers may have had
access to far smaller data sets, but the data in hand was of much higher quality.”
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constant. This effect captures the idea that while data abundance might reduce the fraction of

informative datasets, it increases the chance of finding a good predictor once one has identified

an informative dataset.

As the outcome of each exploration is random, the realized number of explorations varies

across speculators. We denote by ni the realized number of search rounds for speculator i. This

number follows a geometric distribution with parameter Λ(θ∗
i , θ). Thus, the expected number

of explorations for a given speculator (a measure of her search intensity) is

E[ni] = Λ(θ∗; θ, α)−1. (2)

To simplify the exposition, we assume that speculators cannot “store” predictors that they

turn down (i.e., the search for predictors is without recall). We show in the online appendix

that this assumption is innocuous: The equilibrium of the model is identical if speculators have

the option to pick the best predictor obtained up to the point at which they decide to stop

searching for a predictor. Intuitively, the reason is that they face a stationary search problem

because there is no limit on the number of explorations. Hence, if a speculator decides to keep

searching after obtaining a given predictor in a given round, she must still find optimal to do so

in each subsequent round (including for the best predictor obtained until this round). Second,

we assume that speculators cannot trade on a combination of multiple predictors in period 1.

One interpretation is that, if they wish to do so, they should first explore the quality of this

combination at date 0 (that is, one can interpret sθ as being a combination of multiple variables

whose quality is higher than the quality of each variable taken independently).11

Trading phase. The trading phase starts after all speculators successfully complete their ex-

plorations (i.e., find a predictor with satisficing quality). At the beginning of period 1, each

speculator observes the realization of her predictor, sθ and choose a trading strategy, i.e., de-

mand schedule, xi(sθ, p), where, p, is the asset price in period 1.

We formalize trading as in Vives (1995). That is, we assume that trading takes place

between the speculators, noise traders and a risk-neutral market maker. Noise traders’ aggregate

demand is price-inelastic and equal to η, where η ∼ N (0, ν2) (and η is independent of ω and

errors’ in speculators’ signals). The market-maker behaves competitively. He observes investors’

11For instance, using a combination of variables based on parking-lots satellite images and credit-card receipts
(wto distinct datasets) might generate a better predictor of retailers’ earnings than using variables independently.
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aggregate demand, D(p) =
∫
xi(sθ, p)di+η and sets a price equal to his expectation of the asset

payoff (so that his expected profit is zero):

p = E [ω |D(p) ] . (3)

Speculators’ objective function. At t = 2, the asset pays off and speculator i’s final wealth is

Wi = xi(sθ, p)(ω − p)− nic. (4)

The number of explorations for speculator i, ni, is independent from the asset payoff, its price,

and the realization of the speculator’s predictor sθ since ni is determined in period 0, before the

realizations of these variables. Thus, the ex-ante expected utility of a speculator can be written:

E [− exp(−ρWi)] = E [− exp(−ρ(xi(sθ, p)(ω − p))]︸ ︷︷ ︸
Expected Utility from Trading

× E [exp(ρ(nic))]︸ ︷︷ ︸
Expected Utility Cost of Exploration

(5)

The first term in this expression represents the ex-ante expected utility that a speculator derives

from trading while the second term represents the expected utility of the cost of explorations.

The first term depends both on the investor’s optimal trading strategy (xi(sθ,i, p)) and her

optimal stopping rule (θ∗
i ) because this rule determines the distribution of stheta. The second

term depends on the speculator’s stopping rule, θ∗
i because it determines the distribution of ni.

Each speculator chooses her stopping rule, θ∗
i , and her trading strategy, xi(sθ,i, p), to maximize

her ex-ante expected utility. This optimization problem is dynamic because the speculator’s

trading strategy can be contingent on the realization of the speculator’s predictor and the asset

price in period 1 while the stopping rule must be chosen in period 0.

3. Data Abundance, Computing Power, and Optimal Data Mining

3.1 Equilibrium

We focus on symmetric equilibria in which all speculators choose the same stopping rule, θ∗. We

solve for such an equilibrium as follows. First, given the equilibrium outcome of the exploration

phase in period 0, we first solve for the equilibrium of the trading phase in period 1. Armed with

this result, we compute the expected utility achieved by a speculator i who chooses a predictor

of type θ in period 0 (before she observes the realization of her predictor) and we deduce the
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optimal stopping rule of the speculator θ∗
i (θ∗), when she expects other speculators to follow the

stopping rule θ∗. Finally, we pin down θ∗ by observing that, in a symmetric equilibrium, the

speculator’s best response must be identical to other speculators’ stopping rule, i.e., θ∗
i (θ∗) = θ∗.

Equilibrium of the asset market in period 1. The outcome of the exploration phase is charac-

terized by the distribution of the θ’s for the predictors obtained by speculators. Let φ∗(θ; θ∗, θ)

be this distribution given that speculators’ follow the stopping rule θ∗:

φ∗(θ; θ∗
i ; θ, α) = φ(θ)

Λ(θ∗
i ; θ, α) . (6)

This distribution characterizes the heterogeneity of speculators’ predictors in equilibrium. We

denote the average quality of predictors across all speculators in period 1 by τ̄(θ∗, θ) = E [τθ| θ ≤ θ ≤ θ∗].

We assume that the distribution of predictors’ types is such that τ̄(θ∗; 0, α) exists.12 Proposition

1 provides the equilibrium of the asset market in period 1.

Proposition 1. In period 1, the equilibrium trading strategy of a speculator with type θ is:

x∗(sθ, p) = E[ω|sθ, p]− p
ρV[ω|sθ, p]

= τ(θ)
ρσ2 (ŝθ − p) , (7)

where ŝθ = ω + cot−1(θ)εθ and the equilibrium price of the asset is:

p∗ = E[ω|D(p)] = λ(θ∗)ξ. (8)

where

ξ = ω + ρσ2τ̄−1(θ∗; θ, α)η, and λ(θ∗) = τ̄(θ∗; θ, α)2

τ̄(θ∗; θ, α)2 + ρ2σ2ν2 , (9)

This result extends Proposition 1.1 in Vives (1995) to the case in which speculators have

signals of heterogenous precisions (determined by their θ in our model). The predictor sθ is

informationally equivalent to the predictor ŝθ = ω+cot−1(θ)εθ. A speculator’s optimal position

in the asset is equal to the difference between ŝθ and the price of the asset (her expected dollar

return) scaled by a factor that increases with the quality of the predictor and decreases with

the speculator’s risk aversion. The scaling factor measures the speculator’s aggressiveness in

trading on her predictor. Speculators with predictors of higher quality trade more aggressively

12The reason for this technical condition is that we want to consider what happens when θ goes to zero. In
this case, τ̄(θ∗, θ) is not necessarily defined for all φ(.) because the quality of a predictor becomes infinite as its
type goes to zero.
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on their signal because they face less risk (their forecast of the asset payoff is more accurate).

The total demand for the asset (D(p)) aggregates speculators’ orders and therefore reflects

their information. Observing this demand is informationally equivalent to observing the signal ξ,

whose informativeness increases with the average quality of speculators’ predictors, τ̄(θ∗; θ, α).

Thus, the market maker can form a more accurate forecast of the asset payoff and the asset price

is therefore be more informative when the average quality of speculators’ predictors, τ̄(θ∗, θ), is

higher. To see this, let measure the informativeness of the asset price by I(θ∗; θ, α) = V[ω | p∗]−1

as in Grossman and Stiglitz (1980). Using Proposition 1, we obtain:

I(θ∗; θ, α) = τω + τ̄(θ∗, θ, α)2τ2
ω

ρ2ν2 , (10)

where τω = 1
σ2 is the precision of speculators’ prior about the asset payoff. As already explained,

the asset price is more informative when the average quality of speculator’s predictors increases.

Thus, the informativeness of the asset price is inversely related to θ∗ because τ̄(θ∗; θ, α) decreases

with θ∗ (remember that the quality of a predictor is inversely related to θ). Thus, other things

equal, price informativeness is smaller when speculators chooses a less stringent stopping rule

for the quality of the predictors on which they trade.

Equilibrium of the exploration phase. Using the characterization of the equilibrium of the asset

market and the fact that E[x(sθ, p)] = 0 (Proposition 1), we can compute a speculator’s expected

utility from trading ex-ante, i.e., before observing the realization of her predictor and and the

equilibrium price, when her predictor has type θ and other speculators follow the stopping rule

θ∗. We denote this ex-ante expected utility by g(θ, θ∗) and refer to it as the trading value of a

predictor with type θ for brevity. Formally:

g(θ, θ∗) ≡ E [− exp(−ρ(x∗(sθ, p∗)(ω − p∗)) | θi = θ] . (11)

Lemma 1. In equilibrium, the trading value of a predictor with type θ is:

g(θ, θ∗) = −
(

1 + ρ2(V[E(ω|sθ, p)− p]
V[ω|sθ, p]

)
)(− 1

2 )
= −

(
1 + τ(θ)τω
I(θ∗; θ, α)

)− 1
2
. (12)

Thus, the trading value of a predictor increases (is closer to zero) with its quality and

decreases with the informativeness of the asset price. Thus, the trading value of a predictor is
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inversely related to the average quality of predictors used by speculators. Hence, the value of a

given predictor for a speculator depends on the search strategy followed by other speculators:

It is smaller if other speculators are more demanding for the quality of their predictors (i.e.,

when θ∗ decreases).

Armed with Lemma 1, we can now derive a speculator’s optimal stopping rule given that

other speculators follow the stopping rule θ∗. Let θ̂i be an arbitrary stopping rule for speculator

i. The speculator’s continuation utility (the expected utility of launching a new round of

exploration) after turning down a predictor is:

J(θ̂i, θ∗) = exp(ρc)
(
Λ(θ̂i; θ, α)E

[
g(θ, θ∗)| θ ≤ θ ≤ θ̂i

]
+ (1− Λ(θ̂i; θ, α))J(θ̂i, θ∗)

)
(13)

The first term (exp(ρc)) in eq.(13) is the expected utility cost of running an additional search

. The second term is the likelihood that the next exploration is successful times the average

trading value of a predictor conditional on the type θ of this predictor being satisficing (i.e.,

in [θ, θ̂i]). Finally, the third term is the likelihood that the next exploration is unsuccessful

time the speculator’s continuation utility when she turns down a predictor. Solving eq.(13) for

J(θ̂i, θ∗), we obtain:

J(θ̂i, θ∗) =
[

exp(ρc)Λ(θ̂i; θ, α)
1− exp(ρc)(1− Λ(θ̂i; θ, α))

]
︸ ︷︷ ︸

Expected Utility Cost from Exploration

× E
[
g(θ, θ∗)| θ ≤ θ ≤ θ̂i

]
︸ ︷︷ ︸

Expected Utility from Trading

(14)

The continuation value of the speculator when she turns down a predictor does not depend

on the outcomes of past explorations because these outcomes do not affect the speculator’s

opportunity set in future explorations. Thus, J(θ̂i, θ∗) is also the speculator’s ex-ante expected

utility before starting any exploration in period 0. As explained previously, it is the product of

the expected utility cost from explorations and the expected utility from trading.

Now suppose that speculator i has obtained a predictor with quality θ. If the speculator

stops exploring the data at this stage, her expected utility is g(θ, θ∗) (her cost of exploration

to obtain this predictor is sunk). If instead the speculator decides to launch a new round of

exploration, her expected utility is J(θ̂i, θ∗). Thus, the optimal decision is to stop searching for

a predictor if g(θ, θ∗) ≥ J(θ̂i, θ∗) and to keep searching otherwise. As g(θ, θ∗) decreases with θ,

the optimal stopping rule of the speculator, θ∗
i , is the value of θ such that the speculator is just
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indifferent between these two options. Thus, θ∗
i is the value of θ̂i that solves:

g(θ∗
i , θ

∗) = J(θ∗
i , θ

∗). (15)

We show in the proof of Proposition 2 that the solution to this equation, θ∗
i (θ∗) = θ∗, is unique.

In a symmetric equilibrium, it must be that θ∗
i (θ∗) = θ∗. We deduce that θ∗ solves:

g(θ∗, θ∗) = J(θ∗, θ∗). (16)

Using the expression for J(., θ∗) in eq.(13), we can equivalently rewrite this equilibrium condition

as:

F (θ∗) = exp(−ρc), (17)

where F (.) is defined as:

F (θ∗) =
∫ θ∗

θ
r(θ, θ∗)φ(θ)dθ + (1− Λ(θ∗; θ, α)) , for θ∗ ∈ [θ, π/2], (18)

with

r(θ, θ∗) ≡ g(θ, θ∗)
g(θ∗, θ∗) =

(
τ(θ∗)τω + I(θ∗; θ, α)
τ(θ)τω + I(θ∗; θ, α)

) 1
2
, (19)

where the second equality follows from eq.(12). Thus, r(θ, θ∗) is the ratio of the trading value of

a predictor with type θ ∈ [θ, θ∗] to the trading value of a predictor with type θ∗. It is less than

1 because the trading value of a predictor increases with its quality (g(θ∗, θ∗) < g(θ, θ∗) < 0).

We show in the proof of Proposition 2 that F (θ∗) decreases with θ∗ because the ratio r(θ, θ∗)

decreases with θ∗. Indeed, an increase in θ∗ (i) reduces the trading value of a predictor of type

θ∗ (the denominator of r(θ, θ∗)) since its quality declines and (ii) increases the trading value of

a predictor with type θ < θ∗ (the numerator of r(θ, θ∗)) because price informativeness decreases

with θ∗. We have F (θ) = 1, 0 < F (π/2) < 1 and exp(−ρc) < 1 (since c > 0). Thus, there

are two possibilities. If exp(−ρc) ≥ F (π/2), there is a unique solution to eq.(17) and this

solution is in (θ, π/2). If instead exp(−ρc) ≤ F (π/2) then there is no solution. In this case, the

cost of exploration is so large that there is no symmetric equilibrium in which all speculators

are active (i.e., search for a predictor in period 0). However, in this case, one can build an

equilibrium in which only a fraction of all speculators are active. Active speculators search for

a predictor with a stopping rule equal to θ∗ = π/2 while others remain completely inactive. In
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this equilibrium all speculators are indifferent between being active or not. The case in which

all speculators are active is more interesting. Thus, henceforth we assume that c is low enough

so that exp(−ρc) ≥ F (π/2). These observations yield the following result.

Proposition 2. There is a unique symmetric equilibrium of the exploration phase in which all

speculators are active (i.e., a unique stopping rule θ∗ < π
2 common to all speculators) if and

only if exp(−ρc) ≥ F (π/2).

3.2 How do data abundance and computing power affect speculators’ search for pre-

dictors?

In this section, using the previous results, we analyze how data abundance (a decrease in θ

and/or α) and computing power (a decrease in c) affect speculators’ optimal stopping rule (θ∗)

in equilibrium. For brevity, we say that speculators optimally choose to trade on less (more)

demanding predictors when θ∗ increases (decreases). The next proposition shows that greater

computing power (a drop in c) always leads speculators to be more demanding for the quality

of their predictors.

Proposition 3. A decrease in the cost of exploration, c, always reduces the stopping rule θ∗ used

by speculators in equilibrium (∂θ
∗

∂c > 0). Thus, greater computing power raises the quality, τ(θ∗),

of the worst predictor used by speculators in equilibrium.

The economic mechanism for this finding is as follows. Holding θ∗ constant, a decrease in the

per-exploration cost, c, directly reduces the expected utility cost of launching a new exploration

after finding a predictor (the first term in bracket in eq.(14)). Hence, it raises the value of

searching for another predictor after finding one (i.e., J(θ∗, θ∗)). This direct effect induces spec-

ulators to be more demanding for the quality of their predictor and therefore works to decrease

θ∗. One indirect effect of this behavior is that, on average, speculators trade more aggressively

on their signal (the “competition effect”) because they face less uncertainty on the asset payoff

since their predictors are better on average. As a result, price informativeness increases. This

indirect effect of a decrease in the per exploration cost reduces the expected utility from trading

on a satisficing predictor (the second term in bracket in eq.(14)) and therefore dampens the

direct positive effect of a decrease in c on the value of searching for a better predictor after

finding one. However, it is never strong enough to fully offset the decrease in the total expected

search cost due to a decrease in c.
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We now consider the effect of data abundance on speculators’ optimal stopping rule. Re-

member that data abundance has two consequences in the model: (i) it pushes back the data

frontier by raising the quality of the best predictor and (ii) it increases the risk for specula-

tors of using datasets, which after exploration proves to be useless (the needle in the haystack

problem).

Proposition 4.

1. A decrease in the fraction of informative datasets, α, always increases speculators’ stopping

rule, θ∗, in equilibrium (∂θ
∗

∂α > 0). Thus, the needle in the haystack problem reduces the

quality, τ(θ∗), of the worst predictor used by speculators in equilibrium.

2. The effect of a decrease in θ on speculators’ stopping rule is ambiguous. However, when θ is

less than θtr(c), a decrease in θ always increases speculators’ stopping rule in equilibrium

(∂θ
∗

∂θ > 0 for θ < θtr(c)) and reduces the quality, τ(θ∗), of the worst predictor used by

speculators in equilibrium.

Thus, when the needle in the haystack problem becomes more acute, speculators become

less demanding for the quality of their predictors. Intuitively, a drop in α increases the expected

utility cost of launching a new exploration after finding a predictor (the first term in bracket

in eq.(14)) because it reduces the likelihood of finding a predictor in a given exploration (Λ).

Thus, after turning down a predictor, speculators expect to go through a larger number of

explorations rounds before finding a satisficing predictor and therefore to pay a larger total cost

of search. This direct effect induces speculators to be less demanding for the quality of their

predictor and therefore works to increase θ∗ (reduce τ(θ∗)). Indirectly, this behavior reduces

asset price informativeness and therefore raises the expected utility from trading on a satisficing

predictor (the second term in bracket in eq.(14)), which alleviates the direct negative effect of

a decrease in α on the value of searching for a better predictor after finding one. However, this

indirect effect is never strong enough to fully offset the increase in the total expected utility cost

of search due to a decrease in α. In sum, qualitatively, the effect of a drop in α is qualitatively

similar to that of an increase in the per exploration cost.

The effect of pushing back the data frontier on speculators’ stopping rule is more complex.

Counterintuitively, it can lead speculators to trade on predictors of worse quality, even though

the quality of the best predictor increases. The reason is as follows. Remember that the

continuation value of searching for a predictor is the product of the expected utility cost of
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search times the expected utiliy from trading on a satisficing predictor (see eq.(14). On the

one hand, pushing back the data frontier increases the chance of finding a satisficing predictor

conditional on finding an informative dataset (Λ(θ∗; θ, α) increases when θ goes down). This

effect accelerates the speed at which speculators find a predictor and therefore reduces the

expected utility cost of searching for a new predictor after rejecting one. This effect tends

to increase the continuation value of searching for a predictor. On the other hand, a push

back of the data frontier affects the expected utility from trading for two reasons. First, it

gives the possibility to obtain more informative predictors than those existing before (“the

hidden gold nugget effect”), which raises the expected utility from trading on a satisficing

predictor. Second, it increases price informativeness (other things equal, I(θ∗; θ, α) increases

when θ decreases) because speculators who obtain the new most informative predictors trade

even more aggressively than all other speculators. As a result, speculators’ aggregate demand

and therefore the asset price are more informative, which reduces the value of being informed.

This effect (that we call the competition effect of data abundance) reduces the expected utility

from trading on a satisficing predictor. Thus, the sign of a change in the data frontier on the

expected utility from trading is ambiguous.

To see this more formally, observe that:

∂E [g(θ, θ∗)| θ ≤ θ ≤ θ∗]
∂θ

= φ(θ)
Λ


[
g(θ, θ∗)| θ ≤ θ ≤ θ̂i

]
− (g(θ, θ∗)︸ ︷︷ ︸

Hidden Gold Nugget Effect; <0

+
∫ θ∗

θ

∂g(θ, θ∗)
∂θ

φ(θ)dθ︸ ︷︷ ︸
Competition Effect;>0


(20)

When θ becomes small enough, the competition effect dominates the hidden gold nugget

effect and the expected utility from trading on a satisficing predictor drops. The second part

of Proposition 4 shows that there is always a sufficiently low value of θ such that this drop

more offsets the reduction in the expected utiulity cost of finding a predictor. When this

happens, pushing back the frontier further reduces the continuation value of exploration. Hence,

speculator choose a less stringent stopping rule in equilibrium and some optimally choose to

trade on less informative predictors (τ(θ∗) decreases).

We illustrate Proposition 4 by considering two particular specifications of the density of θ.

In specification 1, we assume that φ(θ) = 3 cos(θ) sin2(θ) while in specification 2 we assume that

φ(θ) = 5cos(θ)sin4(θ). These specifications are convenient because they enable us to compute

all variables of interest in closed forms (see the internet appendix). The main difference between
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specifications 1 and 2 is that the distribution of θ has a much fatter right-tail in the first case

(see the internet appendix). Figure 1 below shows the effect of a change in the exploration

cost (c) and the data frontier (θ) on the equilibrium value of θ∗. In either case, as implied by

Proposition 4, a push back of the data frontier initially raises the quality of the worst predictor

used by speculators in equilibrium (reduces θ∗) but, eventually, at some point this effect is

reversed. This reversal is more pronounced in specification 1 than in specification 2, which

shows that the magnitude of the effect depends on the exact distribution of predictors’ quality.
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Figure 1: In each figure, the left hand-side graph represents the equilibrium search threshold, θ∗,
as a function of the search cost, c, with other parameter values, θ = π/8, ρ = 1, σ2 = 1, ν2 = 1.
The right hand-side graph represents the equilibrium search threshold, θ∗, as a function of the
data frontier, θ, with other parameter values, c = 0.03, ρ = 1, σ2 = 1, ν2 = 1. In the first
figure, we assume that φ(θ) = 3cos(θ)sin2(θ) (Case 1) while in the second we assume that
φ(θ) = 5cos(θ)sin4(θ) (Case 2).

Proposition 5. In equilibrium, the quality of the worst predictor used in equilibrium, τ(θ∗),

increases with the volume of noise trading, ν2, or the volatility of the asset payoff, σ2.

An increase in the volume of noise trading (measured by ν2) reduces the informativeness of

the equilibrium price. Other things equal, this means that the trading value of each predictor

relative to the worst predictor used in equilibrium gets larger (that is r(θ, θ∗) goes up). This

effect induces all speculators to search more intensively, i.e., raises the bar for the minimal

quality of the predictors on which speculators trade. The intuition for the effect of the volatility
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of the asset is identical. Thus, the model implies that the average precision of predictors and

the intensity for the search of predictors should be larger in assets that attract more attention

from noise traders or more volatile assets. Simultaneously, the diversity of predictors for these

assets should be smaller.

4. Testable Implications

4.1 Data Abundance, Computing Power, and Stock Picking Abilities

In order to test implications derived in the previous section, empiricists need to estimate the

quality of predictors used by speculators. One way to do so is to regress the position of each

speculator i (or their net order flow) in a given asset, xi(sθ, p∗), on the asset return (ω − p∗)

(e.g., using quarterly data on mutual funds’ positions). Indeed, the coefficient of this regression,

βθ is given by:

βθ = Cov(x(sθ), p∗), ω − p∗)
V ar(ω − p∗) = τ(θ)

ρ
, (21)

where the last equality follows from Proposition 1. Intuitively, βθ is a measure of a speculator’s

stock picking ability.13 Equation (21) shows that, holding risk aversion constant, a ranking

of speculators based on their stock picking ability (measured by βθ) is identical to a ranking

based on the (unobservable) quality of their predictors, τ(θ). This is intuitive: speculators with

better predictors should display a better stock picking ability. Moreover, the cross-sectional

dispersion in βs’ is proportional to the cross-sectional dispersion in the quality of speculators’

predictors. Thus, one could test the implications derived in this section by ranking specula-

tors (e.g., quantitative asset managers) based on their stock picking ability (measured by βs)

and test whether shocks to computing power or data abundance have the effects predicted by

Propositions 3 and 4. For instance, one could test whether positive shocks to computing power

increase the stock picking ability (measured by β) of the funds with the lowest βs’ (say in the

lowest decile) or whether the introduction of new datasets that increases funds’ ability to build

more informative predictors (e.g., the creation of firms selling satellite images to investors, as in

Zhu (2019)) have a negative impact on this ability (while improving the stock picking ability of

the best performing funds). One could also test whether periods of high volatility are associated

with a decrease in the difference between the stock ability of speculators in lowest decile of β

13Kacperczyk et al. (2016) measure mutual funds’ stock picing ability in a similar way. See Section 2.1 in their
paper.
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(those with predictors of low quality) and the top decile of β (those with the most informative

predictors), as implied by Proposition 5.

4.2 Data Abundance, Computing Power, and Asset Price Informativeness

There is a debate about the effects of progress in information technologies on asset price infor-

mativeness. For instance Bai et al. (2016) find that the price SP500 stocks has become more

informative since 1960 and attribute this evolution to improvements in information technolo-

gies. Farboodi et al. (2019) find the opposite pattern for all U.S. stocks, except for large growth

stocks. They argue that this evolution reflects the fact that investors have optimally increased

their production of information about large, fast growing firms at the expense of other firms.

Information technologies improve investors’ ability to build more accurate predictors of asset

payoffs in two ways. On the one hand, they reduce the cost of filtering out noise from raw data

(e.g., greater computing power is key for implementing techniques of artificial intelligence such

as deep neural networks). On the other, they offer the possibility to generate more diverse data

(e.g., through image capture techniques) and to store these data more efficiently. Our model

suggests that these two different aspects of information technologies do not affect asset price

informativeness in the same way. We first discuss the effect of greater computing power.

Proposition 6. In equilibrium, an increase in computing power (a decrease in c) raises the

average quality of speculators’ predictors and therefore price informativeness.

As explained previously, greater computing power induces speculators to be more demanding

for the quality of their predictors (to put more effort in the search of good predictors) because

it reduces the cost of exploring new data to obtain a predictor. As a result, speculators obtain

signals of higher quality on average and therefore trade more aggressively on their signals on

average. In turn, their aggregate demand for an asset is more informative and therefore price

informativeness increases.

Proposition 7.

1. In equilibrium, an improvement in the quality of the most informative predictor (a decrease

in θ) raises the average quality of speculators’ predictors and therefore price informative-

ness.

2. In equilibrium, a decrease in the proportion of informative datasets (a decrease in α)

reduces the average quality of speculators’ predictors and therefore price informativeness.
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Thus the effect of data abundance on price informativeness is ambiguous. If data abundance

only pushes back the data frontier, i.e., improves the quality of the most informative predictor,

then it always improves asset price informativeness, even when it induces speculators to be less

demanding for the quality of their predictors (i.e., when a decrease in θ reduces τ(θ∗)). The

reason is that the drop in the quality of the worst predictor used in equilibrium (if it happens)

is always smaller than the improvement in the quality of the best predictor in equilibrium. As a

result, a push back of the data frontier raises the average quality of predictors and the average

trading aggressiveness of speculators. In contrast, if data abundance only makes it more difficult

to identify truly informative datasets, it unambiguously leads speculators to be less demanding

for the quality of their predictors without changing the quality of the best predictor. As a result

the average quality of predictors drops, speculators’ aggregate demand is less informative and

therefore price informativeness drops.

Of course, in reality, these two effects of data abundance operate jointly. As a result, the net

effect of data abundance on the long run evolution of asset price informativeness is ambiguous,

as found empirically by Bai et al. (2016) and Farboodi et al. (2019). Figure 2 illustrates this

point with a numerical example. In this example we assume that α increases with θ (specifically,

we specify α as α = Min{1, 0.32+0.8×θ}). Thus, data abundance (a drop in θ) generates both

an increase in the quality of the best predictor and a needle in the haystack problem (a drop in

the fraction of informative datasets). As shown by Figure 2, when these two dimensions of data

abundance operate jointly, price informativeness initially rises with data abundance (starting

from a large θ) until it reaches a peak after which it decreases. The reason is that when θ, both

dimensions of data abundance induce speculators to be less demanding for the quality of their

predictors, which eventually is harmful for price informativeness.

21



Figure 2: This graph shows the evolution of price informativeness in equilibrium, I(θ∗, θ) as
a function of the data frontier, θ when φ(θ) = 3cos(θ)sin2(θ) and α = Min1, 0.32 + 0.8 ∗ θ.
Other parameter values, c = 0.03, ρ = 1, σ2 = 1, ν2 = 1.

4.3 Data abundance, Computing Power and Trading Profits

In this section, we analyze how data abundance and computing power affects (i) the distribution

of trading profits for speculators and (ii) the correlation in their trades. In equilibrium, the total

trading profit (“excess return”), π(sθ), of a speculator with type θ on his position in the risky

asset is:

π(sθ) = x∗(sθ, p∗)× (ω − p∗), (22)

where x∗(sθ, p∗) and p∗ are given by eq.(7) and eq.(8), respectively. Using eq.(7), we deduce

that:

x∗(sθ, p∗) = 1
ρσ2 (τ(θ)(ω − p∗) + cot(θ)εθ) . (23)

Thus, the expected trading profit of a speculator with type θ is:

π(θ) = E[π(sθ)|θ] = τ(θ)
ρσ2 V[ω − p∗ | θ] = τ(θ)

ρσ2I(θ∗, θ) (24)

It follows that the unconditional expected trading profit for speculators is:

E[π(θ)] = τ̄(θ∗, θ)
ρσ2I(θ∗, θ) = 1

ρσ2

(
τω

τ̄(θ∗, θ) + τ̄(θ∗, θ)
ρ2ν2

)−1
, (25)
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and the variance of trading profits for speculators is:

V[π(θ)] = V[τ(θ) | θ < θ < θ∗]
σ4ρ2I2(θ∗, θ) . (26)

Empirically, E[π(θ)] and V[π(θ)] could be measured by the cross-sectional mean and variance

of the trading profits of quantitative funds (over, for instance, a given quarter).

Observe that an increase in the average quality of predictors (τ̄(θ∗, θ) has an ambiguous effect

on the expected profit of speculators. One the one hand, this increase improves speculators’s

stock picking ability (the direction of their position is more correlated with the subsequent asset

return). On the other hand, it increases asset price informativeness because it makes speculators’

aggregate demand more informative (as speculators trade more aggressively on their signals on

average when these are more accurate). As shown by eq.(25), the first effect raises speculators’

expected profit while the second reduces it. Using eq.(25), it is easily shown that the first effect

dominates if and only if τ̄(θ∗, θ) ≤ τωρ2ν2. We deduce the following result.

Proposition 8. Suppose θ > τωρ
2ν2.

1. Let ĉ be the unique solution to τ̄(θ∗(θ, ĉ, α), θ) = τωρ
2ν2. Holding all parameters constant,

except c, speculators expected profit reaches its maximum for c = ĉ.

2. Let θ̂ be the unique solution to τ̄(θ∗(θ̂, c, α), θ) = τωρ
2ν2. Holding all parameters constant,

except θ, speculators’ expected profit reaches its maximum for θ = θ̂.

3. Let α̂ be the unique solution to τ̄(θ∗(θ, c, α̂), θ) = τωρ
2ν2. Holding all parameters constant,

except α, speculators’ expected profit reaches its maximum for α = α̂.

If θ ≤ τωρ
2ν2, more data or greater computing power always increases speculators’ average

profit.

Thus, when θ > τωρ
2ν2, an increase in computing power and data abundance has an am-

biguous effect on speculators’ expected profits because a decrease in c, θ, or α affect (i) the

average quality of speculators’ signals and (ii) price informativeness in the same direction (e.g.,

both a decrease in c or θ raise both the average qualityt of speculators’ signals and price infor-

mativeness). However, when computing power is high enough (c < ĉ) or data are sufficiently

abundant (α < α̂ or θ < θ̂, greater computing power or data abundance have a negative effect

on speculators’ expected profit, either because it makes price too informative (θ < θ̂ or c < ĉ)
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or because the needle in the haystack problem reduces too much speculators’ incentive to search

for good predictors, so that their average signal are of too poor quality (α < α̂).

Now consider the effect of changes in the cost of processing data and data abundance on the

dispersion (V[π(θ)]) of expected trading profits across speculators. Using eq.(26), we obtain the

following result.

Proposition 9.

1. Other things equal, the dispersion of speculators’ expected trading profit increases when the

cost of processing data goes down for c small enough (∂V[π(θ)]
∂c > 0 for c sufficiently close

to zero).

2. Other things equal, the dispersion of speculators’ expected profit decreases when the data

frontier is pushed back for θ small enough (∂V[π(θ)]
∂θ < 0 for θ sufficiently close to zero).

3. Other things equal, the dispersion of speculators’ expected trading profit increases when the

fraction of informative datasets decreases (α decreases).

To understand the first part of the proposition, suppose that c = 0. In this case, all

speculators search for a predictor until they find one with the highest possible quality, θ∗ = θ.

As a result, all speculators trade on predictors of the same quality (V[τ(θ) | θ < θ < θ∗] = 0)

and therefore the dispersion of expected trading profits is nil, as can be seen by inspection

of the expression for V[π(θ)] (eq.(26)). Now consider a small increase in c starting from the

situation in which c = 0. This increase raises θ∗ and therefore the dispersion of the quality of

predictors used by speculators (V[τ(θ) | θ < θ < θ∗] increases). As a result, the dispersion of

trading profits increases as well. This increase is amplified by the fact that price informativeness

goes down, which works to increase the dispersion in trading profits as well (see the expression

for V[π(θ)] in eq.(26)). As these effects still hold for larger values of c, we conjecture that

the first part of Proposition 9 holds for all values of c but we have not been able to show it

analytically (numerical simulations suggest that our conjecture is correct; see Figure 3 below

for an example).

When θ < θtr(c), the quality of the best predictor increases while the quality of the worst

predictor used by speculator decreases when data become more abundant (see Proposition

4). Thus, the range of quality for the predictors used in equilibrium gets wider. This effect

increases the dispersion of the quality of predictors used by speculators (V[τ(θ)] increases),
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which increases the dispersion of speculators’ expected profits, holding price informativeness

constant. In equilibrium, price informativeness improves but for θ small enough, this second

effect is not sufficient to offset the first. This explains the second part of the proposition.

The effect of a decrease in α is more straightfoward. Indeed, such a decrease leads speculators

to be less demanding for the quality of their predictors (θ∗ increases when α decreases). Thus, a

decrease in α enlarges the dispersion of the quality of speculators’ predictors. As it also reduces

price informativeness, it follows from eq.(26) that the dispersion of speculators’ trading profits

increases.

In sum, data abundance and improvements in computing power have similar effects on

speculators’ expected profits but can have opposite effects on the dispersion of these profits.

Figure 3 illustrates this point using the same specifications for the density of θ as in Figure 1.

For these specifications, a decrease in the cost of processing data always reduces the dispersion of

expected trading profits across speculators. In contrast, the dispersion expected trading profits

always increases when θ decreases (for the numerical values considered in Figure 3).
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Figure 3: The left hand-side graph represents the variance of speculators expected profits,
V[π(θ)], as a function of the search cost, c, with other parameter values, θ = π/5, ρ = 1, σ2 =
1, ν2 = 1. The right hand-side graph represents the variance of speculators expected profits as a
function of the data frontier, θ, with other parameter values, c = 0.05, ρ = 1, σ2 = 1, ν2 = 1. In
the first figure, we assume that φ(θ) = 3cos(θ)sin2(θ) (Case 1) while in the second we assume
that φ(θ) = 5cos(θ)sin4(θ) (Case 2).
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4.3.1 Data Abundance, Computing Power and Crowding

Crowding, i.e., the tendency for investors to follow the same trading strategy and exploit the

same signals, has been a rising concern for quantitative fund managers. Shanta Putchler,

the CEO of Mannumeric (a quantitative investment fund) notes that:14 “The single largest

contributor to crowding is the simple fact that investors tend to do the same sorts of things.

There is a real propensity for investors to analyse the same datasets, with the same statistical

techniques, and hence end up with largely overlapping positions.” An interesting question is

whether data abundance and greater computing power reduces or increases crowding.

To analyze this question, we study how data abundance and computing power affect the cor-

relation between speculators’ equilibrium positions (a measure of crowdness of trading strategies

in a given asset) in our model. Specifically, let cov(x(sθi , p∗), x(sθj , p∗)) be the covariance be-

tween the equilibrium holdings of a speculator with type θi and a speculator with type θj . Using

eq.(23), we obtain:

cov(x∗(sθi , p∗), x∗(sθj , p∗)) = τ(θi)τ(θj)
σ4ρ2 V[ω − p] = τ(θi)τ(θj)

σ4ρ2I(θ∗, θ) . (27)

We deduce that the pairwise correlation between the equilibrium positions of a speculator with

type θi and a speculator with type θj is:

corr(x∗(sθi , p∗), x∗(sθj , p∗)) =
(

1 + I(θ∗, θ)
τ(θi)τω

)− 1
2
(

1 + I(θ∗, θ)
τ(θj)τω

)− 1
2

(28)

Thus, holding the quality of the predictors used by two speculators constant, their positions

become less correlated when price informativeness is higher. Intuitively, the reason is that

speculators trade on the component of their forecast of the asset payoff that is orthogonal to

the price. This component reflects both the component of the fundamental, ω, that is not

reflected into the equilibrium price and the noise in speculators’ signal. The higher the first

component relative to the second, the higher the pairwise correlation in speculators’ positions

in the asset. As the price becomes more informative, the first component becomes smaller

and smaller relative to the noise component and as a result, the pairwise correlation between

speculators’ positions drops. Using Proposition 7, we deduce the following result.

Proposition 10.

14See https://www.man.com/maninstitute/crowding)
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1. Greater computing power (a decrease in c) reduces the pairwise correlation of speculators’

positions.

2. Data abundance has an ambiguous effect on the pairwise correlation of speculators’ posi-

tions. It reduces it if it improves price informativeness but increases it otherwise.

This proposition suggests again that data abundance and computing power do not neces-

sarily have the same effects. To test the previous result, one must be able to measure the

pairwise correlation of speculators’ positions, holding the quality of their signal constant. One

difficulty is that data abundance or greater computing power can change the whole distribution

of speculators’ predictors used in equilibrium, in particular the mean and variance of this distri-

bution (see Propositions 8 and 9). Intuitively, a decrease in the dispersion of predictors might

on average raise the pairwise correlation in speculators’ positions. To analyze this possibility,

we consider the average pairwise correlation in speculators’ positions across all possible pairs,

defined as:

corr ≡ E
[
corr(x∗(sθi , p∗), x∗(sθj , p∗))

∣∣∣ θi, θj ∈ [θ, θ∗]2
]

= E

(1 + I(θ∗, θ)
τ(θ)τω

)− 1
2

∣∣∣∣∣∣ θ < θ < θ∗

2

.

(29)

The effect of greater computing power or data abundance on this average correlation is a

priori ambiguous. To see this, consider a decrease of θ∗ induced by the reduction of c. On the

one hand, every pairwise correlation decreases as shown in Proposition 10, which drives down

the average correlation. But a composition effect goes in the opposite direction. Indeed, the

correlations between the former marginal type θ∗ and other θ’s cease to exists, and they are

replaced by the average correlation which is larger. Consistently, Figure 4 shows that the average

correlation in speculators’ positions can be non monotonic in c or θ (for the same reason).
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Figure 4: The left hand-side graph represents the average trade correlation, corr, as a function
of the search cost, c, with other parameter values, θ = π/5, ρ = 1, σ2 = 1, ν2 = 1. The right
hand-side graph represents the average trade correlation as a function of the data frontier, θ,
with other parameter values, c = 0.05, ρ = 1, σ2 = 1, ν2 = 1. In the first figure, we assume that
φ(θ) = 3cos(θ)sin2(θ) (Case 1) while in the second we assume that φ(θ) = 5cos(θ)sin4(θ) (Case
2).

5. Speculators’ Welfare and Data Abundance

As shown in Section 3.1, the ex-ante expected utility of each speculator in equilibrium is

J(θ∗, θ∗) = g(θ∗, θ∗). That is, each speculator’s expected utility is just equal to the expected

utility from trading on the worst predictor used in equilibrium. The reason is that the increase in

the expected utility from trading associated with further explorations for a speculator who has

found a predictor with type θ∗ is just offset by the expected utility cost of further explorations.

As can be seen from eq.(12), g(θ∗, θ∗) decreases with the informativeness of the asset price

and increases with the quality of the worst predictor (τ(θ∗)). Now, when θ < θtr(c), a decrease

in θ raises price informativeness (Proposition ??) and reduces the quality of the worst predictor

(Proposition 4). Thus, it unambiguously reduces speculators’ expected utility.

Proposition 11. When θ < θtr(c), pushing back the data frontier (a decrease in θ) reduces

speculators’ expected utility.

In contrast, an increase in computing power increases the quality of the worst predictor and
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price informativeness. Thus, its effect on speculators’ expected utility is ambiguous. Numerical

simulations show that the first effect dominates unless c becomes very small. Thus, in contrast

to a push back of the data frontier, an improvement in computing power raises speculators’

expected utility. Figure 5 illustrates this point using the same numerical examples as in Figure

1.

0.0 0.2 0.4 0.6 0.8

-0.98

-0.96

-0.94

-0.92

-0.90

Data Frontier (θ)

E
qu
ili
br
iu
m
C
on
tin
ua
tio
n
V
al
ue
,
g
(θ

*
,θ

*
)

0.00 0.01 0.02 0.03 0.04 0.05

-0.940

-0.935

-0.930

-0.925

Search Cost (c)
E
qu
ili
br
iu
m
C
on
tin
ua
tio
n
V
al
ue
,
g
(θ

*
,θ

*
)

Figure 5: This graph shows speculators’ ex-ante expected utility as a function of θ and c when
φ(θ) = 3cos(θ)sin2(θ) (with other parameter values being set at ρ = 1, σ2 = 1, ν2 = 1).

Interestingly, data abundance can make speculators worse off in equilibrium. One might

then wonder whether it would not be optimal for a speculator to ignore new data. This is not

the case, however. To see this, suppose that θ drops from θ0 to θ1 < θ0 but that speculators

decide not to take advantage of the new data. This means that they keep behaving as if θ = θ0

(in particular, they use the stopping rule θ∗(θ0)). A speculator’s expected utility is then given

by J(θ∗(θ0), θ∗(θ0)). One can show (using eq.(14) that, holding θ∗(θ0) constant, this expected

utility increases when the quality of the best predictor is improved. Thus, if new datasets open

the possibility that the quality of the best predictor improves, each speculator will individually

find optimal to use these datasets, if she expects others not to do so. But then the equilibrium

stopping rule must shift from θ∗(θ0) to θ∗(θ1)

We now show that the equilibrium stopping rule is excessive, in the sense that it leads them

to search predictors of too high quality compared to what would maximize speculators’ ex-ante

expected utility, if speculators could commit to follow to a particular stopping rule. To see this,

let θ∗∗ be the stopping rule that maximizes the ex-ante expected utility of all speculators, i.e.,

that solves:

θ∗∗ = arg max
θ

Π(θ, θ). (30)

We obtain the following result.
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Proposition 12. In equilibrium, the quality of the marginal predictor is too high relative to the

quality that maximizes speculators’ ex-ante expected utility, that is

θ∗ < θ∗∗. (31)

Thus, there is excessive investment in search in equilibrium from speculators’ viewpoint.

The reason is as follows. Suppose that all speculators search for predictors with a stopping rule

equal to θ∗∗. Now consider a speculator who draws a predictor with precision θ∗∗. Her expected

trading profit is less than her expected utility of continuing searching for another predictor,

assuming that other speculators keep searching with the same intensity (i.e., the same stopping

rule θ∗∗). Formally:

g(θ∗∗, θ∗∗) < J(θ∗∗, θ∗∗).

Thus, the speculator has an incentive to deviate from the stopping rule by increasing her search

intensity. However, in doing so, the speculator ignores the fact that this must be true for all

speculators and that if all speculators deviate, there will all be worse off. Instead, a central

planner organizing the search for predictors would internalize this effect.

6. Conclusion

To be written
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