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Abstract

Exchange-traded funds (ETFs) depend on arbitrageurs to correct deviations between a
fund’s price and its fair value. ETFs have designated brokers, or authorized participants
(APs), who have a unique right to create and redeem ETF shares, and who can thus
trade on ETF mispricing without risk. Using novel regulatory filings, we provide the
first description of the US ETF-AP network. It has a dense core and a sparse periphery,
and the observed creation/redemption volumes are highly concentrated. The level of
mispricing in a US equity ETF is negatively related to the fund’s network diversity,
especially during times of high market volatility. Funds that share more APs exhibit
stronger mispricing comovement. We theoretically show that diverse networks help
mitigate the effect of shocks to AP-specific arbitrage costs. We highlight the importance
of AP balance sheet usage costs in ETF markets by exploiting the Federal Reserve’s
purchases of bond ETFs in 2020.
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1 Introduction

Exchange-traded funds (ETFs) are an extremely successful financial innovation. They
have attracted over $5.4 trillion in the US by the end of 20201 and democratized diversified
access to various markets and asset classes. Despite this rapid growth, very little is known
about the primary markets of ETFs, where ETF shares are supplied, or the authorized
participants (APs) of these markets who have exclusive rights to create and redeem ETF
shares. The primary market helps an ETF maintain intraday liquidity and keeps the ETF
share price close to its underlying value, i.e., the net asset value of the fund. During the
COVID-19 crisis, however, many funds saw large mispricing.2 On March 13, 2020, the price
of the SPDR S&P 500 ETF (SPY), the largest ETF in the industry, diverged from its
underlying basket by 0.8%.3

Several papers have explored the importance of the arbitrage mechanism in ETF
primary markets.4 However, due to the lack of appropriate data, this literature has focused
on a representative AP. To the best of our knowledge, ours is the first paper to provide a
comprehensive description of US ETF primary markets and to suggest that AP heterogeneity
affects ETF mispricing. Using novel regulatory filings, we characterize the network of ETF-
AP connections as one with a dense core and a sparse periphery. The primary markets of
US ETFs significantly differ in diversity, composition, and in the concentration of trading
activity. We establish that the level of mispricing in a US equity ETF is related to the fund’s
primary market features, especially during times of stress.

We propose a mechanism behind the empirical findings: diverse primary markets
mitigate the effect of shocks to AP-specific arbitrage costs. In our model of ETF arbitrage,
equilibrium mispricing depends on the number of participating arbitrageurs and their average
costs. We present evidence that AP-specific costs matter for ETF mispricing in the data.
In particular, we observe stronger mispricing comovement for funds that share more APs.
Finally, we highlight the importance of AP balance sheet usage costs in ETF markets by
exploiting the Federal Reserve’s purchases of bond ETFs in 2020.

We exploit the new regulatory N-CEN filings to characterize the primary markets of
ETFs in the US. Starting from June 1, 2019, all ETFs are required to report the structure
1Compared to $0.2 trillion in 2004, according to Investment Company Factbook (ICF) data:
https://www.ici.org/system/files/2021-05/2021_factbook.pdf. According to the ICF, ETFs now account
for 18% of investment company assets in the US.

2For a study of mispricing in bond ETFs during the COVID-19 turmoil, see, for example, Haddad, Moreira,
and Muir (2021).

3With an $88.8 bln trading volume on March 13, 2020, this divergence amounts to hundreds of millions of
dollars on a single day. This assumes that all volume is traded at a price 0.8% lower than the NAV. The
exact magnitude is $88.8 bln × 0.8% ≈ $710 mln.

4See, for example, Malamud (2015), Ben-David, Franzoni, and Moussawi (2018), and Pan and Zeng (2019).
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and activity of their primary markets to the US Securities and Exchange Commission (SEC).
More specifically, ETFs provide the SEC with details about the identities of the authorized
participants who are registered with them, and about the annual trading volume of each
AP. We use this information to construct the ETF-AP network, where APs are considered
as connected to a fund if they have a registered relationship.

Our first contribution is the description of ETF primary markets. The network of
ETF-AP connections is not very dense on average – as of 2019, 48% of all potential con-
nections were formed. It is not a random graph: there is a notably dense core and a sparse
periphery. This network structure leads to considerable cross-sectional variation in fund-
level primary market characteristics. The majority of ETF-AP links are inactive: in only
one-fifth of cases does an AP create or redeem shares of a connected ETF. The median ETF
has connections with 22 (out of 50) APs; only four of these connections are active.5 We also
document a strong persistence of the ETF-AP relationships: 97% of ETF-AP connections
in 2019 were maintained in 2020.

Next, we describe brokers with a unique right to operate in the ETF primary markets.
Most APs are bank-affiliated brokers, and some are global systemically important banks (G-
SIBs). Out of 50 APs operating in the market, 15 are responsible for 98% of creations and
redemptions, and the top three APs generate half of that total volume.6 However, most of the
authorized participants in our sample are prime brokers, who create or redeem ETF shares
on behalf of their clients.7 Thus, the observed AP-level volume is the aggregate for the AP
and its customers and we argue that the ultimate arbitrageur market is not as concentrated
as it may seem in N-CEN filings.

As our second contribution, we relate mispricing in US equity ETFs to the number and
composition of their connections with APs. Using several measures of primary market size
and diversity, we show that ETFs with more diverse primary markets experience significantly
lower mispricing in the cross-section. To address reverse causality, we first show that ETF
mispricing is not a significant predictor of future AP registrations and activity in the fund.
Second, we argue that the ETF-AP relationships are persistent and that they did not have
time to react to the market disturbances caused by COVID-19. Hence, we regress the 2020
ETF mispricing levels on the 2019 primary market features. A one standard deviation
increase in the number of APs that are registered in a fund translates into a 15% lower
5Aquilina, Croxson, Valentini, and Vass (2020) documented a similar level of activeness for European ETF
markets.

6This analysis does not include designated market makers, as they have a different agreement with funds
and are paid for providing liquidity.

7By law, only self-clearing brokers can become APs in US ETFs. So even large institutional investors who
do not self-clear cannot participate in ETF primary markets directly. For details, see SEC rule 6c-11:
https://www.sec.gov/rules/final/2019/33-10695.pdf and Laipply and Madhavan (2020).
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average daily mispricing. Importantly, the effect primarily comes from days with a high level
of financial market stress, when primary markets are likely to be marginal.8 Correspondingly,
only on such days is there a pass-through of primary market transaction costs to mispricing.
Our results are robust to using different mispricing measures and definitions of market stress,
and including additional fund-level controls or benchmark index fixed effects.

We also study ETF flows as a key measure of activity in ETF primary markets. In
particular, we estimate the sensitivity of ETF flows to mispricing. The literature has consid-
ered this sensitivity as a measure of how well ETF primary markets function.9 Consistent
with the previous findings, we see that flows are highly sensitive to mispricing. We docu-
ment a novel fact that the flow-premium sensitivity is higher for ETFs with larger primary
markets, which suggests that the properties of ETF-AP networks contribute to the efficacy
of the arbitrage mechanism.

We argue that the relationship between an ETF’s primary market features and its
mispricing is driven by the arbitrageur-specific costs of transactions in ETFs. The costlier
that arbitrage for ETF secondary market participants, the more the observed mispricing
is determined by the structure of the primary market. To elucidate the mechanism, we
construct a static model with two identical assets that are traded by price-taking investors
in segmented markets and by oligopolistic arbitrageurs who bear costs based on the size of
the gross arbitrage position. An investor demand shock generates mispricing between the
assets. Arbitrageurs’ activity depends on the size of the demand shock in comparison to their
costs and to the costs of their competitors. The equilibrium level of mispricing is defined
by the number of participating arbitrageurs and by their average costs. We illustrate that
in our model, a larger and more diverse pool of potential arbitrageurs makes mispricing less
sensitive to changes in costs for a given arbitrageur or to the exclusion of certain arbitrageurs
from the market.

We present evidence for heterogeneity in AP costs assumed in our model. We relate
the observed level of mispricing to AP features that are likely to pick up differences in
arbitrage costs, such as AP total assets, primary market trading volume and centrality,
and the number of prime brokerage clients.10 We find that all these features are negatively
related to mispricing even conditional on the number of active APs. This is consistent with
the prediction of our model that funds with lower costs among available arbitrageurs have
8Secondary market arbitrageurs can also trade on ETF mispricing. However, in contrast to APs, for whom
the arbitrage is riskless due to their exclusive right to create and redeem ETF shares, secondary market
arbitrage is subject to the risk of further divergence between ETF price and NAV.

9See, for example, Pan and Zeng (2019) and Dannhauser and Hoseinzade (2021).
10Following Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel (2020), we use regulatory ADV filings in
order to link APs in our sample to their clients.
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lower mispricing.
If shocks to AP-specific costs matter in ETF markets, the mispricing of ETFs sharing

the same APs should comove. In the data, the correlation of mispricing between two ETFs in
our US equity sample is related to the commonality in their active AP network. On low-stress
days, this commonality does not contribute to correlation in ETF mispricing. On high-stress
days, however, having twice as many common active APs is associated with 6 percentage
points higher correlation. The magnitude is conditional on ETFs having similar benchmark
indices, belonging to the same fund family or investment category, and after including both
funds’ fixed effects. Finally, we find no significant relationship between mispricing correlation
and the number of common active APs for funds with large networks.

Balance sheet usage costs are a likely driver of heterogeneity in arbitrage costs in
ETF markets.11 Since most APs in our sample are regulated entities that offer institutional
brokerage services, regulatory costs are likely to contribute to the balance sheet usage costs
that such APs charge. Therefore, the regulatory costs enter into arbitrageurs’ optimization
problem and feed into equilibrium mispricing.

To shed some light on the importance of balance sheet costs, we study the mispricing
of equity ETFs during the announcement and implementation of the Federal Reserve’s Sec-
ondary Market Corporate Credit Facility (SMCCF). Concerned by plummeting corporate
bonds during the first weeks of March 2020, the Federal Reserve announced several stabi-
lizing programs. One of them, the SMCCF, was to provide liquidity to the secondary bond
market through purchases of bonds and bond ETFs. These purchases were made through
primary dealers and involved several APs from our US equity ETF sample. During the
implementation of the program, AP capital was used to purchase bond ETF shares to sat-
isfy the demand of the Federal Reserve. All else equal, allocation of room for the Federal
Reserve’s purchases required the capital to be shifted internally to a bond desk and, hence,
raised the break-even condition for equity ETF trades.12 Thus, we expect higher mispricing
among equity ETFs whose APs are highly exposed to the Fed’s purchasing program.

Consistent with this hypothesis, we find that funds whose APs are more engaged
in the SMCCF program exhibit higher mispricing during the implementation period. The
effect is economically small but statistically significant. Importantly, we see that the result is
concentrated in ETFs with less diverse primary markets and on days when secondary market
arbitrageurs are less likely to step in. We observe no effect during the same period in 2019.
11The literature shows that regulatory constraints impede intermediation in many financial markets. See,
for example, Fleckenstein and Longstaff (2020) and Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel
(2020).

12We rely on the assumption that capital within financial institutions is slow-moving (Duffie (2010) and
Siriwardane (2019)).
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This result represents a spillover from the bond to equity ETF primary markets, which again
highlights the interconnectedness of funds through APs in their primary markets.

We explore alternative explanations for the relationship between an ETF’s primary
market features and its mispricing. In particular, we consider binding equity capital con-
straints, arbitrageur disagreement in evaluating arbitrage opportunities, and limits to arbi-
trageurs’ attention. We find little support for these channels in our data.

Our results highlight potential contagion in ETF primary markets. First, the rela-
tionship between the primary market characteristics and ETF mispricing concentrates in
high-risk times, making ETFs susceptible to shocks to their APs. Second, mispricing of two
funds comoves more if they share more APs, consistent with shock propagation. Finally, our
results imply that the Federal Reserve’s bond ETF buying program had spillovers in equity
ETF markets.

Related literature. Our paper is related to the literature on exchange-traded funds,
limits to arbitrage, and networks in financial markets.

ETFs have attracted significant academic interest, which has primarily focused on
ETFs’ asset pricing implications. Specifically, Ben-David, Franzoni, and Moussawi (2018)
argue that equity ETFs amplify non-fundamental shocks and increase volatility in ETFs’ un-
derlying securities. Malamud (2015) theoretically shows that primary market arbitrage may
propagate shocks. Israeli, Lee, and Sridharan (2017) and Cong (2016) argue that increased
ETF ownership leads to less informative pricing due to higher trading costs, higher return
comovement, and lower future earnings responses. Box, Davis, Evans, and Lynch (2021)
exploit high-frequency data to argue against the propagation of nonfundamental shocks to
ETF underlying securities. Evans, Moussawi, Pagano, and Sedunov (2017) discuss the effect
of ETF shorting on underlying liquidity and price efficiency. The literature has also docu-
mented the impact of ETFs in other asset classes.13 Even though many of these papers posit
that nonfundamental shocks are propagated due to the activity of authorized participants
in ETF primary markets,14 the empirical analysis of these markets is very scarce.15

The paper most related to our work is Pan and Zeng (2019). The authors study the
primary markets of the two largest corporate bond ETF issuers in the US to show that the
quality of the arbitrage mechanism depends on APs’ inventory management motives. We
use a more comprehensive dataset to characterize the primary markets of US ETFs across
13In particular, on corporate bonds (e.g., Dannhauser (2017) and Bhattacharya and O'Hara (2017)) and
VIX futures (Dong (2016) and Todorov (2019)).

14Consistent with that, Brown, Davies, and Ringgenberg (2020) use ETF flows as signals of non-fundamental
demand shocks.

15A recent exception is contemporaneous work-in-progress by Zurowska (2022). Raddatz (2021) also uses
N-CEN data but with a focus on corporate bond ETFs and COVID-19 turmoil.
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all asset classes. Our results suggest that mispricing outcomes are related to the balance
sheet usage costs of APs even for US domestic equity ETFs.16

ETF mispricing has attracted researcher attention since the early days of the industry
(Elton, Gruber, Comer, and Li (2002) and Engle and Sarkar (2006)). Petajisto (2017)
documents deviations in ETF prices and argues that these deviations remain economically
significant even after adjusting for the stale components in fund NAVs. More recently, Bae
and Kim (2020) document that better ETF liquidity leads to lower mispricing. We find
that the liquidity of ETF shares is related to the structure of its primary markets and that
mispricing is higher for ETFs with less diverse primary markets controlling for ETF liquidity.
This, along with the findings of Bae and Kim, suggests that ETF primary market diversity
has a direct and an indirect effect on ETF mispricing.17

Academics and regulators have recognized the potential of systemic risk arising from
ETFs’ primary markets. Dannhauser and Hoseinzade (2021) study the Taper Tantrum
episode, and document a flow-induced bond-price pressure that originates from ETF ar-
bitrage. Shim and Todorov (2021) compare redemption mechanisms in mutual funds and
ETFs, and show that APs may act as a buffer between ETF markets and an ETF’s un-
derlying assets. Cohen, Laipply, Madhavan, and Mauro (2021) provide further insights into
the functioning of the primary markets for fixed income ETFs during the COVID-19 crisis.
Neither of these papers considers the structure of ETF primary markets. Aquilina, Croxson,
Valentini, and Vass (2020) use a proprietary dataset18 to describe the primary market for
EU-domiciled ETFs. The authors observe that, despite high market concentration, alterna-
tive liquidity providers step in during times of stress. Our data also suggest a high degree of
concentration in the US primary market. However, we also point out a significant institu-
tional difference between the US and European ETF markets: APs in the US are required to
be self-clearing firms. This means that the volumes attributed to the largest prime broker-
age firms may represent the activity of a larger number of arbitrageurs.19 Moreover, we find
that funds with lower primary market concentration are more resilient in times of stress, as
measured by mispricing.
16There is minimal liquidity mismatch between these ETFs and their underlying stocks.
17Khomyn, Putnins, and Zoican (2020) abstract away from mispricing to study ETF liquidity. Their paper
models APs as competitive market makers, and argues that the ETF bid-ask spread only depends on
the activity of the ETF’s secondary market and on the liquidity of the ETF’s underlying assets. We
document cross-sectional differences in the liquidity of ETFs with different primary market structures,
which suggests that this view of ETF liquidity might be incomplete. We leave a more detailed analysis of
liquidity provision in different primary market structures to future research.

18This dataset is based on a one-time regulatory request from the Financial Conduct Authority in the UK.
19More specifically, the volume captures the clients of the prime broker and other subsidiaries of the broker’s
holding company.
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Our paper also contributes to the literature on limits of arbitrage.20 There is a
growing body of evidence that regulatory capital constraints result in deviations from the
no-arbitrage price in many asset markets.21 The list includes but is not limited to prominent
covered interest rate parity violations (Du, Tepper, and Verdelhan (2018))22 and the basis
in the interest rate futures market (Fleckenstein and Longstaff (2020)).23 In this line of
work, the most related paper is Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel (2020),
which shows that the break-even condition for many types of bank-intermediated arbitrage
is affected by the post-crisis regulation. Our results suggest that regulatory costs may also
manifest in the deviation of the ETF price from its NAV.

Finally, our paper contributes to the literature on the role of networks in financial
markets. Di Maggio, Kermani, and Song (2017) show that ties between corporate bond
dealers define the level of spreads that dealers charge and that this effect is more pronounced
during periods of market stress. Li and Schuerhoff (2019) document that central dealers
in municipal bond markets charge double round-trip markups, but that they also provide
immediacy. Centrality and concentration are shown to be important in other OTC markets,
e.g., CDS (Peltonen, Scheicher, and Vuillemey (2014)) and asset-backed securities (Hollifield,
Neklyudov, and Spatt (2017)). We are the first to describe the network of exchange-traded
funds and their authorized participants in the US and to document the implications of broker
heterogeneity and fund connectedness for ETF mispricing. It is important to understand
the incentives for agents in the ETF-AP network, which has a different structure than most
OTC markets.

The rest of the paper is organized as follows. In Section 2, we describe the ETF
market and the role of APs in correcting ETF mispricing. Section 3 describes our data
sources. We characterize the network of ETF-AP connections and define fund-level primary
market features in Section 4. Section 5 links primary market features with ETF mispricing.
Section 6 builds a theoretical model of the costly ETF arbitrage and empirically demonstrates
the importance of AP cost heterogeneity for ETF mispricing. Section 7 concludes.
20This literature studies the asset pricing implications of short-selling costs (e.g., Duffie (1996)), leverage
constraints (e.g., Gromb and Vayanos (2002) and Brunnermeier and Pedersen (2008)), and of constraints
on equity capital (Shleifer and Vishny (1997) and He and Krishnamurthy (2013)). Gromb and Vayanos
(2010) and He and Krishnamurthy (2018) offer a comprehensive review of this literature. Though our
model in Section 6.1 shares many of the features of Gromb and Vayanos (2002) and Fardeau (2020), we
make arbitrage costly instead of including arbitrageur wealth constraints. We motivate our model with
differences in the institutional setup of ETF markets.

21There are also theoretical models of dealers’ balance sheets, e.g., Andersen, Duffie, and Song (2018).
22However, Augustin, Chernov, Schmid, and Song (2020) document that only one-third of CIP deviations
can be associated with the limits of arbitrage.

23Several papers attribute price dislocations during COVID-19 to balance sheet constraints, e.g., He, Nagel,
and Song (2021) and Chen, Liu, Sarkar, and Song (2020).
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2 Institutional Setup

2.1 ETF Infrastructure

Exchange-traded funds provide intra-day liquidity and exposure to a basket of secu-
rities, and require the coexistence of two markets: ETF shares are traded on a centralized
exchange (the secondary market), while the supply of shares can be adjusted daily in the
over-the-counter market (the primary market). As with closed-end funds, the ETF share
price on the secondary market may deviate from its fundamental net asset value per share
(NAV). The primary market is designed to limit such mispricing.

Authorized participants (APs) are specialized broker-dealers who have an exclusive
right to operate in the primary ETF market, and so they play a critical role in the functioning
of ETFs. As shown in Figure 1, an AP has to deliver a creation basket to the ETF issuer
in order to create new ETF shares. The ETF portfolio manager makes the composition of
the basket publicly available before the start of a trading day.24 If an AP does not have
the shares required by the basket, they will purchase them on the respective market, e.g.,
the exchange for equities and over-the-counter market for bonds. Converting the basket into
ETF shares happens at the end of the trading day, and is called an ‘in-kind’ creation, as
opposed to a ‘cash’ creation when an ETF accepts the cash value of the basket instead of
the constituent securities. The basket is always valued using the end-of-day fund NAV.25

Figure 1: AP-centric ETF Infrastructure

To become an AP, a broker must enter into a legal agreement with a fund. This
24ETFs typically reserve the right to decline redemption/creation orders but generally choose to do so only
if a basket is considerably misaligned. Custom baskets are less common for equity ETFs so we abstract
from this in our analysis.

25Further details of the ETF markets are outlined in Lettau and Madhavan (2018).
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agreement creates a right (but not an obligation) for APs to create and redeem ETF shares.26

Though both ETFs and APs share the legal costs of such agreements, ETFs do not pay their
APs.27 Furthermore, APs have to pay a transaction fee on every creation or redemption
order. Thus, APs are financial intermediaries who can operate in both the primary and
secondary markets of an ETF, and who profit from any deviation between ETF share price
and NAV.

Importantly, to become an AP, a broker must be a member of a clearing agency that
is registered with the US Securities and Exchange Commission.28 This means that a broker
must be able to act as a clearing firm instead of submitting trades to an external clearing
firm, and that the number of brokers who can become an AP in the US ETF market is
formally limited. However, any market participant acting through a prime broker who is
also an AP can access the primary ETF market for a commission. Throughout the paper,
we refer to such market participants as AP clients (depicted together with APs in Figure 1).

2.2 ETF Mispricing

ETF mispricing arises when the secondary market share price deviates from its net
asset value per share. Since underlying constituents and ETF shares are both traded on
exchanges and are very liquid, mispricing for equity ETFs is easily measurable.

We define mispricing as the absolute value of a fund’s premium, following the standard
approach in the literature:

Mispricingft = |premiumft| =
∣∣∣∣∣Pft −NAVftNAVft

∣∣∣∣∣ , (1)

where Pft is the share price of fund f on day t and NAVft is the fund’s NAV. The fund
trades at a premium when its price is above the NAV, while a negative premium means
that the fund trades at a discount to its NAV. We use daily closing prices throughout the
paper.29 However, (1) only provides a proxy for the intraday mispricing observed by market
participants using real-time intraday NAVs.
26Pan and Zeng (2019) argue that the inventory-management incentive of APs in bond ETFs can clash with
their incentive to correct an ETF’s mispricing. Since APs have no obligation to a fund, they might choose
to create or redeem shares in a way that actually increases mispricing.

27In that sense, APs are different from market makers (MMs), who are paid to maintain liquidity in ETF
shares on the secondary market. In our dataset, market makers are almost never the same entities as APs.

28The regulatory definition is as follows: "AP is a broker-dealer that is also a member of a clearing agency
registered with the Commission, and which has a written agreement with the Exchange-Traded Fund or
Exchange-Traded Managed Fund or one of its designated service providers that allows it to place orders
to purchase or redeem creation units."

29We confirm in the Appendix that our results go through with midpoint prices.
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The deviations between an ETF’s share price and its NAV represent a textbook
arbitrage opportunity for authorized participants of the fund. As an example, consider a
case when an ETF share price is above its NAV. Having noticed the divergence, an AP can
immediately enter a transaction on two sides, that is, buy the basket of underlying securities
and sell ETF shares in the secondary market (‘lock in the spread’). The AP then delivers
the basket to the ETF in exchange for the ETF shares, which they then use to close the
short position. Since the conversion always happens at NAV, there is no risk to the AP.

For AP i to be willing to trade one basket of ETF shares (a minimum order size), a
break-even condition for the level of mispricing in the shares of fund f on date t has to be
satisfied:

Mispricingft >
TransactionFeef

Basket Sizef ×NAVft
+ cft + cit. (2)

TransactionFeef is the dollar amount that ETF f charges an AP for creating or redeeming
one basket of shares, and Basket Sizef is the number of shares in one basket of fund f .
cft are other ETF-specific costs, e.g., expected price impact or short-selling, while cit are
AP-specific costs. The latter make break-even condition (2) different across APs.

There are various economic drivers of differences in AP arbitrage costs. Importantly,
APs in our sample are regulated entities, so most of them have balance sheet costs.30 Activ-
ities outside of AP business may generate synergies and thus reduce AP-specific costs. For
example, inventory that is used in an institutional brokerage business may be cross-utilized
in the ETF creation/redemption process. Finally, some APs in our sample are proprietary
trading firms and market makers, whose advanced trading technologies may also reduce their
arbitrage costs. We characterize the relationship between ETF mispricing and AP costs more
formally through a model in Section 6.1.

Because ETF shares are traded on an exchange, any secondary market arbitrageur
can benefit from ETF mispricing. An investor could take opposite positions in an ETF and
in its underlying basket, and then realize profits when the mispricing corrects. Such a trade
would be costly, as the ETF basket might include thousands of securities, as well as risky,
given that the ETF price and NAV could diverge even further. Therefore, even though the
secondary market participants can engage in correcting ETF mispricing, the APs (or their
clients) are in a unique position to do so without risk.
30Some APs are global systemically important banks (G-SIBs). The literature has shown that regulatory
costs disincentivize banks’ arbitrage activities (see, for example, Fleckenstein and Longstaff (2020) and
Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel (2020)). We provide further details in Section 6.
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3 Dataset

3.1 N-CEN Filings and ETF Data

In our analysis, we use the new regulatory filings called N-CEN forms. The N-CEN
form is used for annual reports filed pursuant to rule 30a-1 under the Act (17 CFR 270.30a-
1).31 This regulation is one in a series of investment company reporting modernization
reforms that were adopted by the US Securities and Exchange Commission (SEC) between
2016 and 2019. All entities were required to comply with the new reporting as of June 1,
2019.

The N-CEN form captures information about the structure, organization, and general
activities of management investment companies. In particular, funds are required to report
details on their organization, directors, legal proceedings, principal underwriters, accounting,
share class structure, securities lending, investment advisers, transfer agents, pricing services,
custodians, and brokers.

Exchange-traded funds are also required to fill out Part E of the form, which captures
information about the fund’s primary market, e.g., its registered authorized participants
(name, central registration depository (CRD) number, legal entity identifier (LEI), the dollar
value of fund shares that were redeemed and purchased during the fiscal year, whether the
AP was required to post collateral with the fund), creation units (size, average and standard
deviation of the cash percentage, transaction fees, the fiscal year return difference to the
benchmark (benchmark provider, annualized tracking difference, and tracking error), and
whether the fund shares are only redeemed in kind.32 ETFs report all APs with which they
have legal agreements, even if a broker is inactive throughout an entire reporting period.
Inactive brokers are reported to have creation and redemption volumes of zero.

We download and parse all available N-CEN forms from the SEC EDGAR system.33

We select the last available filing in a given reporting period.34 Details on the merging
procedure are in Appendix A.2.

We aggregate authorized participants to the holding company level. The AP identifier
reported in N-CEN forms (LEI) refers to a separate legal entity. These entities can be
geographical subsidiaries, acquired companies, or clearing firms. However, they still operate
31The official description of the form is available on the website of the SEC: https://www.sec.gov/files/formn-
cen.pdf.

32These requirements are defined in rule 22e-4 of the SEC, available here:
https://www.sec.gov/rules/final/2016/33-10233.pdf.

33We include all N-CEN and N-CEN/A forms available in EDGAR as of April 01, 2021.
34Funds’ reports are based on their fiscal years. The majority of ETFs have December 31 as their fiscal
year-end. If a fund published amended forms, we use the last available amendment.
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under one brand and do not have independent financing.35 Furthermore, these legal entities
do not specialize in asset classes or sectors, and we do not observe individual trading desks.
We use the reported AP names to aggregate the data and then manually check the holding
company structure on Factset. In our sample, 39 out of the 50 holding companies have only
one legal entity.

We use CRSP and Morningstar for the standard ETF data. Details on how we merge
datasets and what filters we impose to arrive at the final sample of 438 equity ETFs are in
Appendix A.4.

3.2 Other Data Sources

Stock EPS announcements come from I/B/E/S, and we use the macroeconomic cal-
endar from Factset. The OFR Financial Stress Index and VIX come from Federal Reserve
Economic Data (FRED).

AP data come from several sources. We use Factset to link the AP legal entities with
their holding companies. We also get data on public APs’ total assets and market equity
from Factset (all in USD). For private APs, we take the total assets from annual reports
submitted to the SEC. We use the 2020 list of global systemically important banks (G-SIBs)
from the Financial Stability Board (FSB) to classify the APs.36 We obtain information
on services APs provide, such as institutional brokerage and clearing, from their websites.
Finally, we characterize prime brokerage clients of APs by linking our data to ADV forms
as described in Appendix A.5.

All the data on the Secondary Market Corporate Credit Facility (SMCCF) are from
the Federal Reserve’s website.37

4 Characterizing the ETF Primary Markets in the US

In this section, we provide the first insights into the US ETF primary markets by
characterizing ETF-AP connections and AP activity. We provide summary statistics for
the APs and ETFs, define primary market features at a fund level, and discuss how these
features relate to the basic ETF characteristics.

In the general description of ETF primary markets, we consider ETFs across all
35A notable example is the Virtu Financial Inc. holding company, with five LEIs. We provide a detailed
description of Virtu in Appendix A.3.

36Available on the FSB website: https://www.fsb.org/2020/11/fsb-publishes-2020-g-sib-list/.
37https://www.federalreserve.gov/monetarypolicy/smccf.htm
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underlying asset classes in 2019. Our sample includes 1,913 ETFs from 114 fund families.38

More specifically, we have 815 US equity ETFs (from 90 families), 467 International Equity
ETFs (from 53 families), and 354 bond ETFs (both government and corporate from 45
families).39

4.1 Authorized Participants

APs are subsidiaries of large financial conglomerates or of specialized trading firms.
The majority are bank holding companies. Some APs have US banking subsidiaries, while
others are foreign banks with broker-dealer branches in the US. The rest are proprietary
trading firms.

In total, 50 authorized participants operate in the US ETF markets. The top 15 APs
are responsible for 97.5% of the ETF primary market activity. Table 1 provides summary
statistics for these top 15 APs, sorted by the annual creation/redemption volume.40 The
most active AP (Bank of America) brings about almost a fourth of the volume, and the top
three APs are responsible for almost a half.

AP activity in the ETF primary markets looks concentrated, yet most APs in the US
are also institutional brokers who provide their clients with access to ETF creations/redemption
process. APs in the US are required to be self-clearing, so most investors cannot gain direct
access to ETF primary markets and trade via their prime brokers. For example, most of the
volume from the Bank of America comes from its Merrill Lynch Professional Clearing Corp.
subsidiary, which offers prime brokerage services. Therefore, the volumes we report in Table
1 are the aggregate of trading activity for each AP and its clients. The second column in
Table 1 indicates which APs do not offer institutional brokerage services.41 We call them
‘direct investors’ as they are likely to trade for their own account.

38ETFs are typically issued by investment management companies under a fund family brand (or ETF series)
such as SPDR or iShares.

39The remaining 277 funds are classified in Morningstar as ‘Allocation’, ‘Alternative’, ‘Commodities’, or
with no classification.

40For the full list of authorized participants, with information about the total assets of their ultimate owners,
see Appendix Table A1.

41Namely: Citadel, Flow Traders, Virtu, Jane Street, and Hudson River Trading.
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Table 1: Descriptive Statistics by Authorised Participant (AP)

The table provides the summary statistics for 15 authorized participants most active in the primary markets for all US ETFs in 2019, sorted from most to least active.
Total volume is measured as a dollar volume of creations and redemptions combined in the full N-CEN dataset. Total equity volume is the same for equity ETFs. AP
data are aggregated to the holding company level. ‘Direct investor’ is ‘No’ if AP offers prime brokerage services. HHI is the Herfindahl-Hirschman Index computed as
HHI =

∑
i∈N

flow_share2
i ∈ [0, 1], with N as the number of funds the AP traded with.

AP Name
Direct
investor

Total
volume, $
billion

Total equity
volume, $
billion

Cumulative
share, %

Registered
in funds,

no.

Registered
in families,

no.

Active in
funds, %

Active in
families,

%

HHI in
funds

Bank of America No 963.3 588.4 23.5 1851 101 84 94 0.03
Goldman Sachs No 605.6 455.9 38.3 1684 76 50 78 0.11
ABN Amro No 475.1 468.5 49.9 1346 25 21 68 0.18
JPMorgan No 414.9 209.2 60.0 1727 92 53 86 0.02
Morgan Stanley No 277.6 256.7 66.8 1460 33 22 64 0.05
SG Americas No 209.5 200.7 71.9 1483 38 14 58 0.34
Citadel Yes 201.5 199.0 76.9 1670 73 35 68 0.05
Credit Suisse No 170.6 87.2 81.0 1738 86 40 78 0.02
Virtu Yes 134.7 117.0 84.3 1622 90 44 77 0.02
Citigroup No 109.2 93.4 94.0 1512 35 20 51 0.04
UBS No 108.2 59.5 90.0 1593 51 22 45 0.05
Deutsche Bank No 91.0 84.6 91.9 1574 63 11 43 0.15
BNP Paribas No 85.4 84.9 93.9 1384 28 6 32 0.09
Barclays No 85.2 72.2 96.0 1243 21 9 48 0.23
RBC No 62.5 33.4 97.5 1648 65 23 45 0.04
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4.2 The ETF-AP Connections

In this section, we describe the ETF-AP connections in the U.S. ETF primary mar-
kets. More specifically, we characterize them as a network and document its basic properties,
such as density and persistence. For US equity funds, we define several features that reflect
the size, activity, and diversity of the ETF primary markets.

4.2.1 The Basic Network Description

One can think of the body of ETF-AP connections as a network. In particular, the
ETF-AP network is bipartite – it has two types of agents (ETFs and APs), and the observed
links only connect agents of different types. We say that an ETF and an AP have a registered
connection if they sign a legal agreement allowing the AP to create and redeem shares of the
ETF. If an AP executes a non-zero volume of creations/redemptions during a fiscal year, we
call the connection active.

Figure 2 presents the network graph for registered connections. For purposes of
exposition, it shows ETF Family - AP connections. At a Family-AP level, the density of the
network is 22.4% – of the 5,700 potential connections, only 1,277 are established. A median
AP is connected to 13 fund families, and a median family has connections with 9 APs.

Figure 2: ETF-AP Network: Registered Connections

Nodes: AP holding company (blue) and ETF families (black).

The network has a notably dense core and a sparse periphery. The largest AP (Bank
of America) is connected to 101 of 114 families, and four other top APs are connected to
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more than 70 families. The variation in connectedness is considerable even among the top
15 APs: several of the brokers work with fewer than 30 funds. On the ETF side, there are
three families connected with 41 (of 50 total) APs. The periphery is quite sparse, where four
APs are connected to one family and three families are connected to a single AP. 70 families
are connected to 10 or fewer APs.

At the fund level, the network has a similar core-periphery structure. The density of
47.6% (45,505 out of 95,650 potential connections) is considerably higher than the density
at the family level, which suggests that funds in the largest families are the most connected.
The median AP has the right to operate in 931 ETFs, while the median ETF is connected
to 22 APs. AP-ETF connections are likely to be established for the whole family at once –
for 942 out of the 1,277 registered family-AP connections, APs operate in all funds of the
family.

Though the ETF-AP network is quite dense, less than one-fifth of the connections
are active. Moreover, the primary market activity is concentrated in the largest APs. For
the median AP, just 1.5% of connections are active, and 15 APs did not create or redeem
any ETF shares during 2019. The network of active connections between APs and ETF
families is plotted in Figure 3. A median ETF has just four active APs. The activity of APs
within funds is very concentrated: For over 65% of the funds, one AP is responsible for more
than half of all creations and redemptions, and for 11%, all creations and redemptions are
executed by a single AP.

The relationships in primary markets appear to be relatively stable, with the network
saturating slowly over time. In 2019, 1,639 of the 40,518 missing ETF-AP connections were
established, and 1,186 of the 40,136 existing connections were destroyed.42 This gives a net
of 453 established connections per year, or a 1.1% network growth from 2019 to 2020.43

Similarly, we see a net 2% increase in the number of active connections in 2020.
Networks with a dense core and sparse periphery are common in OTC financial mar-

kets.44 Even though the ETF-AP network is bipartite and OTC network models are not
directly applicable, some of the forces contributing to the formation of dense cores in OTC
markets can still be active in our setting. For example, there might be benefits to concen-
trated intermediation due to lower inventory risk (Wang (2016)). We conjecture that the
observed structure arises due to the lower unit inventory costs when an AP trades in several
42There are no obvious costs for maintaining an established legal connection. We leave the study of broken
connections to future research.

43Here, we only account for the 1,730 funds and 49 APs reporting in both 2019 and 2020, and ignore network
changes from delisted or created funds and from AP entries or exits.

44Examples include corporate bonds (Di Maggio, Kermani, and Song (2017)), municipal bonds (Li and
Schuerhoff (2019)), CDS (Peltonen, Scheicher, and Vuillemey (2014)), and asset-backed securities (Holli-
field, Neklyudov, and Spatt (2017).
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ETFs, and from the high legal costs of connecting to a new fund. When establishing a
connection, an AP weighs the costs against the expected benefits from trading. The high
legal costs of establishing a connection then contribute to the sparse periphery. We leave
the formal treatment of the ETF-AP network formation to future research, when more data
on the evolution of ETF-AP relationships becomes available.

Figure 3: ETF-AP Network: Active Connections

Nodes: AP holding company (blue) and ETF families (black).

4.2.2 ETFs

Our main goal is to explore the relationship between ETF primary markets and US
Equity ETF mispricing, so from here onwards we restrict our attention to this part of the
ETF universe. Table A2 in the Appendix provides the summary statistics for ETFs in our
sample.45

The size distribution of US equity ETFs is highly skewed: the average fund is almost
ten times larger than the median fund that has around $600 mln in assets. At the end of
2019, a median fund is slightly older than 12 years and receives 35bps in annual fees from
investors. The median net creation is equal to 5.8% of the assets under management per
year, suggesting overall growth in the US equity ETF industry. The annual primary market
volume for a median fund (creations and redemptions combined) is about as large as the
total assets under management. The secondary market is even more active: the median
45We provide summary statistics for International Equity ETFs and Bond ETFs in Appendix Table A3.
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annual trading volume is twice the size of the primary market.46

4.2.3 The Cross-Sectional Differences in ETF Primary Markets

To compare primary markets of different funds, we construct the following descriptive
features at a fund level: fund connectedness, primary market activity and diversity, and the
share of direct investors in primary market volume.

Connectedness reflects the importance of a given node in a network. We measure
fund connectedness as the logarithm of the number of registered connections with APs. In
the context of ETF primary markets, a fund’s connectedness is a proxy for the number of
potential arbitrageurs and liquidity providers.

We define primary market (PM) activity as the logarithm of the number of APs
that are active in a fund over a given year.47 This measure reflects the number of active
arbitrageurs rather than the number of potential arbitrageurs (registered APs). As such, it is
consistent with the literature on OTC networks where only active connections are observable.
Given that we call APs active when they traded at least once throughout a year, our measure
is an upper bound for the true level of activity.

To measure the primary market diversity of an ETF, we use a function of the
Herfindahl-Hirschman Index (HHI) that is based on the trading shares of APs in the fund.
A higher HHI reflects a fund’s higher concentration of creation/redemption activity, which
might imply lower competition and that a fund is dependent on a particular broker. There-
fore, (1 - HHI) measures PM diversity.

Finally, we consider a share of direct investors in ETF primary market activity. As
described above, most APs operate as institutional brokers and their trading volume reported
in N-CEN filings is an aggregate of all clients. Furthermore, the costs of brokerage services
may affect clients’ arbitrage activity (see, for example, Boyarchenko, Eisenbach, Gupta,
Shachar, and Tassel (2020)). Share of direct PM volume reflects trading on direct investors’
own accounts and is, therefore, less likely to be subject to similar intermediation costs.

Panel A of Table 2 reports the summary statistics for primary market features at
an ETF level. Consistent with the network description provided in Section 4.2.1, there
is considerable cross-sectional variation for all primary market features. The features are
also persistent: the cross-sectional correlation between 2019 and 2020 is 54% for the share
of direct PM volume, 61% for PM diversity, 91% for PM activity, and close to 99% for
connectedness.
46The descriptive statistics of our sample are in line with those published by the 2020 Investment Company
Fact Book, available here: https://www.icifactbook.org/.

47Formally, we use ln(1 + N) for connectedness and ln(1 + Nact) for PM activity. The logarithm captures
the decreasing effect of an additional AP on the size of the primary market.
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Table 2: ETF Primary Market Features

Panel A documents the summary statistics for the network features in the sample of 438 US equity ETFs in 2019. The primary
market features are defined in Section 4.2.3. Panel B provides the pairwise cross-sectional correlations for the primary market
features. Panel C reports regression estimates of ETF primary market features on fund characteristics. Fund characteristics
include: logarithm of fund size (in $mln), logarithm of age (in days), logarithm of creation basket size (in $), transaction fee,
net expense ratio, dummy for whether ETF shares can be redeemed through an in-kind transaction only, benchmark index
volatility of daily returns in 2019, average daily turnover of ETF shares on exchange in 2019, and total PM turnover scaled
by fund size. Transaction fee is the average of creation and redemption fees. In Panel C, all regressions include Morningstar
Investment Category fixed effects, and t-statistics based on HAC-robust standard errors are in parentheses. Significance levels
are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

Panel A
Mean Median St. Dev. p1 p99

Fund connectedness 3.30 3.50 0.49 1.61 3.74
PM activity 2.05 2.08 0.52 0.69 3.09
PM diversity 0.64 0.69 0.19 0.00 0.89
Share of direct PM volume 0.21 0.18 0.16 0.00 0.72

Panel B
(1) (2) (3)

(1) Fund connectedness
(2) PM activity 0.425***
(3) PM diversity 0.368*** 0.791***
(4) Share of direct PM volume 0.050 0.087 0.273***

Panel C Primary market features

PM activity PM diversity Fund
connectedness

Share of
direct PM
volume

Ln(Size) 0.151*** 0.030*** -0.054*** -0.012**
(13.57) (4.57) (-3.58) (-2.02)

Ln(Age) 0.159*** 0.058*** 0.468*** 0.008
(5.21) (3.27) (11.33) (0.49)

Ln(Basket Size) -0.126*** -0.041** 0.139*** -0.020
(-4.61) (-2.58) (3.77) (-1.35)

Transaction Fee -0.011** -0.006* 0.033*** 0.007**
(-2.03) (-1.81) (4.66) (2.55)

Net Expense Ratio -0.003*** -0.001 -0.004*** -0.001**
(-3.66) (-1.26) (-3.36) (-2.44)

Turnover 1.564*** 0.437** 0.591 -0.622***
(4.78) (2.30) (1.34) (-3.53)

In-Kind ETF dummy -0.030 -0.035** -0.120*** -0.007
(-1.13) (-2.22) (-3.31) (-0.47)

Benchmark index st.dev. % 0.003 0.001 0.003 0.003
(0.60) (0.18) (0.42) (1.04)

Average spread, bps -0.006*** -0.002** -0.007*** -0.003***
(-3.75) (-2.26) (-3.54) (-3.41)

Total annual PM turnover 1.311** 0.173 2.364*** 0.824**
(2.17) (0.49) (2.89) (2.53)

Observations 438 438 438 438
Within R2, % 73.7 33.0 47.5 12.6
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As suggested by Panel B of Table 2, PM activity, diversity, and connectedness are
highly correlated with each other. Direct investors contribute to PM diversity but their
volume share is not related to the size of the primary market or PM activity in general.

4.2.4 Primary Market Features and Fund Characteristics

We complete the section by documenting how primary market features are related
to basic fund characteristics and which fund characteristics predict APs’ future registration
and activity in the cross-section.

We start by running a cross-sectional regression of fund primary market features on
fund characteristics. Panel C of Table 2 reports results.

As follows from columns (1) and (2), on average, APs are more active in larger
and older funds, which is consistent with the gradual formation of ETF-AP relationships.
ETF liquidity as measured by average bid-ask spread is also strongly associated with AP
activeness. This may reflect the fact that APs prefer to come to the most liquid ETFs first,
but also may be the result of improvements in fund liquidity due to APs’ participation. Also,
there are more active APs in funds with a larger turnover. Net expense ratio is negatively
associated with AP activeness, that is, funds with larger and more diverse primary markets
are cheaper to end investors. Finally, the larger the primary market transaction fees48 and
the creation basket size, the less active fund APs are.

Column (3) illustrates how fund features relate to connectedness. First, the link
with fund age is much more pronounced. Conditional on age, the relationship between
connectedness and size is negative. Second, unlike measures related to activeness, fund
connectedness is positively related to fees and basket size. It is plausible that more connected
ETFs, all else equal, are able to set larger basket sizes and extract higher fees in their primary
markets.

Unlike the other primary market features, the share of direct investors is not related
to the fund’s age (column (4)). All other things equal, this share is higher in smaller,
cheaper, and more liquid funds. Note, however, that the total explanatory power of all fund
characteristics (as measured by R2) is quite small for the share of direct investors (compared
to the other primary market features).

To further explore what determines APs’ decisions to register or become active in
a certain fund, we run cross-sectional tests at the connections level. Appendix Table A6
explores which ETF characteristics as of 2019 predict new connections and activity of APs
in 2020. New ETF-AP registrations strongly depend on whether the AP is already regis-
tered with the ETF family and fund age. Whether an AP is active in the ETF in 2020 is
48Appendix A.1 provides details on how we compute the measure of primary market transaction fees.
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predominantly determined by being active in 2019, both in ETF and ETF family. Fund size
and share turnover also increase the probability of being active in 2020. In addition to these
characteristics, a higher expense ratio predicts lower primary market volume. Importantly,
average ETF mispricing in 2019 is not a significant predictor of future AP registrations or
activity. These results are similar for panel regression estimates with AP and investment
category fixed effects and probit regression estimates without fixed effects.

Taken together, our results suggest that ETFs with larger and more diverse primary
markets are older, larger, more actively traded in the secondary market, and cheaper to end
investors. It is cheaper to create and redeem shares of such ETFs as well. ETF family-level
connectedness and fund age strongly predict future AP registrations, while fund size and AP
past activity in the fund are the best predictors of future AP activity and primary market
volumes.

5 Primary Markets and Mispricing in US Equity ETFs

In this section, we investigate the relationship between ETF primary market proper-
ties and mispricing in the cross-section of US equity funds. We find that funds with larger
and more diverse primary markets are less mispriced on average, even after controlling for
ETF characteristics. Relying on the persistence of the ETF-AP relationships, we show that
having a more diverse primary market in 2019 is associated with less mispricing in 2020.
This relationship manifests itself on days with high financial stress. We also document that
the sensitivity of primary market flows to premium in ETF shares is higher in larger net-
works. Finally, we show that the correlation of mispricing between two ETFs depends on
the commonality of their primary markets.

5.1 How Mispriced Are US Equity ETFs?

On average, equity ETFs are fairly priced. Panel B of Table A2 in the Appendix
reports the summary statistics for the premium and mispricing of ETF shares in our sample.
We compute ETF mispricing using the definition in Equation (1). The cross-sectional mean
of the daily premium is virtually zero and the mean of mispricing is 7bps. For comparison,
the mean daily tracking error49 of funds in our sample is below 4bps.

Our estimates of mispricing are consistent with those in Petajisto (2017). The paper
documents that for an average equity ETF, mispricing is close to zero but that its volatility
49Tracking error is calculated as the standard deviation of the daily difference between the return on ETF
shares and the return on ETF benchmark.
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is large. Similar to Petajisto, we evaluate total dollar deviation due to inefficient prices in
our sample. Such deviation is defined as the absolute difference between the dollar volume at
the close price and the dollar volume at NAV, aggregated annually. We see that, across asset
classes, the deviations amounted to $32 billion in 2019 and $80 billion in 2020 (compared
with the estimate of $40 billion a year for 2007-2014 provided by Petajisto).

5.2 ETF Network Features and Mispricing in 2019

To study the relationship between ETF primary market features and mispricing, we
estimate the following specification in the cross-section of 438 US Equity ETFs in 2019:

Mispricingf = β × PrimaryMarket featuref + γ ′Xf + αMS + εf , (3)

whereMispricingf is the average daily mispricing of fund f in 2019. PrimaryMarket featuref

is one of the four features defined in Section 4.2.3.
There are several sources of potential omitted variable bias in equation (3). First,

APs could be more likely to register with ETFs that are older. Second, direct investors are
likely to trade in cheaper and more liquid ETFs.50 Therefore, in all regression specifications,
we control for funds’ age, fees, and liquidity (bid-ask spread). APs are also more likely to
be active in larger ETFs with more secondary market demand, so we control for fund size
and the turnover of ETF shares. We include further fund characteristics which are related
to the fund’s primary market features, as shown in Table 2, Panel C.

The resulting set of controls, Xf , includes the logarithm of size, the logarithm of age,
the logarithm of creation basket size, transaction fees, the net expense ratio, a dummy for
whether fund shares can only be redeemed in-kind, the average bid-ask spread of the ETF
in 2019, the benchmark index volatility in 2019, and the average turnover of ETF shares on
the exchange in 2019.51 αMS are Morningstar Investment Category fixed effects.52

As Table 3 reports, ETFs with more active and diverse primary markets experienced
less mispricing in 2019. The better connected the ETF, the less its shares are mispriced.
Mispricing is also lower for ETFs with a lower concentration of primary market volume
(higher PM diversity) and with a larger share of direct PM volume. The magnitudes are
50This interpretation is consistent with practitioners’ views on the typical ETF lifecycle: as an ETF matures,
more brokers join its network. See, for example: https://www.franklintempleton.com/articles-us/liberty-
shares/etf-capital-markets-desk-trading-arbitrage-and-the-new-etf.

51Chosen controls are broadly consistent with previous studies of the cross-section of ETF mispricing such
as Bae and Kim (2020).

52Adding these fixed effects barely affects our estimates throughout the paper, but we keep them to account
for varying complexity in ETF management and pricing that is not picked up by our controls.
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similar across network features and economically small: a one standard deviation increase
in PM activity decreases daily mispricing by 1bps (or 15%).

Table 3: ETF Primary Market Features and Mispricing in 2019

This table reports the results of estimating the following specification:

Mispricing2019
f = β × PrimayMarket featuref + γ′Xf + αMS + εf

The regression is estimated on a cross-section of 438 US equity ETFs in 2019. The dependent variable is the average ETF
mispricing in 2019, which is the absolute value of the relative premium of ETF share price over its net asset value per share.
Fund characteristics include: logarithm of fund size (in $mln), logarithm of age (in days), logarithm of creation basket size (in
$), transaction fee (in bps), in-kind redemption dummy, net expense ratio (in bps), average bid-ask spread of the ETF in 2019,
benchmark index volatility of daily returns in 2019, and average daily turnover of ETF shares on exchange in 2019. Transaction
fee is the average of creation and redemption fees. Primary market features are defined in Section 4.2.3. All regressions include
Morningstar Investment Category fixed effects. t-statistics based on robust standard errors are in parentheses. Significance
levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

PM activity PM diversity Connectedness Share of direct
PM volume

Panel A: Without controls for fund characteristics
Primary market feature -6.133*** -13.111*** -3.745*** -5.149***

(-14.48) (-10.28) (-7.32) (-2.96)
Within R2, % 33.6 20.4 11.5 2.1

Panel B: With controls for fund characteristics
Primary market feature -3.176*** -4.983*** -0.374 -3.437***

(-4.84) (-4.32) (-0.74) (-2.76)
Within R2, % 57.7 57.3 55.4 56.1

Primary market features are also positively associated with the liquidity of ETF
shares. In Appendix Table A4, we show that bid-ask spreads are lower for funds with
more diverse networks.53 This result is a natural consequence of an AP’s role as a liquidity
provider of ETF shares. The larger number of those liquidity providers operate in ETF
primary markets and the less ETF relies on a particular provider, the narrower the bid-ask
spread.

One may have a concern that our controls for the characteristics of underlying assets
are not sufficient: the observed relationship between the primary market features and ETF
mispricing may be driven by the preference of APs for certain equity sectors. Therefore,
we verify our results in a setting with benchmark index fixed effects (see Table A5 in the
53In unreported analyses on daily data similar to those in Section 5.3, we see that the network is also more
important for ETF liquidity on high-FSI days.
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Appendix). We find that, even within the same benchmark, primary market features are
negatively related to mispricing.

The positive relationship between ETF mispricing and the fund network diversity
in 2019 could potentially be driven by reverse causality. On the one hand, to maximize
arbitrage profits, APs are more likely to register with ETFs that are more mispriced on
average. On the other hand, APs could prefer to register with less mispriced ETFs if such
ETFs were demanded by APs’ clients. In Appendix Table A6 we found that past mispricing
has a negative but insignificant effect on future AP registrations and activity. However, since
we only have two cross-sections of data, our tests in Table A6 may lack power. To make
sure that our results are not driven by contemporaneous network changes, we take a fund’s
network as it was in 2019 and explore the mispricing implications in the 2020 daily panel.

5.3 ETF Primary Market Features and Mispricing in 2020

We document that ETFs with large and diverse networks in 2019 experience less daily
mispricing in 2020. Using the OFR Financial Stress Index (FSI), we show that the effect
is concentrated in high-stress days, which suggests that primary market connections matter
most when ETF investors might care about it the most.

We estimate the following specification on daily data in 2020:

Mispricingf,t =β1 × PrimaryMarket featuref ×DLowFSI
t (4)

+ β2 × PrimaryMarket featuref ×DHighFSI
t

+ γ ′1Xf,t ×DLowFSI
t + γ ′2Xf,t ×DHighFSI

t

+ δ′1Yf ×DLowFSI
t + δ′2Yf ×D

HighFSI
t

+ αMS + αt + εf,t,

where Mispricingf,t is the mispricing of fund f shares on day t. PrimaryMarket featuref

is one of the four features defined in Section 4.2.3 as of 2019. DHighFSI
t equals 1 when the

daily FSI on day t is positive (or stress above average, as per OFR definition).54 Correspond-
ingly, DLowFSI

t equals 1 when the daily FSI on day t is negative. Xf,t is a vector of fund
characteristics on day t: the bid-ask spread of the ETF shares and its square, the bench-
mark index return and its square, and the turnover of ETF shares on the exchange.55 Yf is
54FSI is positive for 30% of observations in 2020, or on 75 out of 253 days.
55We report results for the winsorized Mispricingf,t, daily bid-ask spread, and turnover (all at the 99.5th
percentile), but our findings are not sensitive to winsorization. We include squared spread and benchmark
return to capture nonlinearities that might be important in high-stress times. Our results are qualitatively
similar without these controls.
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a vector of fund characteristics: the logarithms of size and age (as of 2019), the logarithm
of creation basket size, transaction fees, the net expense ratio, a dummy for whether fund
shares can only be redeemed in-kind, and the benchmark index volatility in 2019. αMS are
Morningstar Investment Category fixed effects and αt are date fixed effects.

In equation (4), β1 estimates the average cross-sectional effect of a given network
feature on ETF mispricing on days when FSI is negative (low stress); β2 estimates the average
cross-sectional effect on days when FSI is positive (high stress). We include interactions of
all controls to make sure that the estimates of β1 and β2 are conditional on potentially
different loadings of mispricing on fund characteristics. For example, such a specification
takes into account the fact that mispricing is even larger on high-stress days for less liquid
ETFs. Results are qualitatively similar in a specification without control interactions.

As Table 4 reports, all four network features measured in 2019 are associated with
lower mispricing in 2020. This result corroborates our findings in Section 5.2, which alle-
viates the concern that the relationship we are documenting is driven by network changes
in response to relative mispricing in 2020. Moreover, the results in Panel (B) of Table 4
indicate that the relationship between network features and ETF mispricing only manifests
on high-FSI days.

To provide further evidence of primary markets’ importance in eliminating arbitrage,
in Panel (B) of Table 4 we address the relation between fund mispricing and primary mar-
ket transaction fees. If mispricing is eliminated by the secondary market participants, its
observed level should not be related to primary market fees. On the contrary, if primary
market arbitrageurs are marginal in correcting mispricing, then these fees should be reflected
in the observed mispricing (see breakeven condition (2)). The data fully support this logic:
primary market fees are highly statistically significant only in periods with high FSI. This
result suggests that primary market arbitrageurs are marginal in stressful times.

We subject our results to a battery of robustness tests. Our findings are similar if
we measure ETF mispricing using midpoint prices as shown in Appendix Table A7. Fur-
thermore, in Appendix Table A8, we show that PM activity and diversity are important for
both small and large ETFs (as defined by median fund size). Connectedness matters for
small funds only, while the share of direct PM volume is only important for large ETFs.
Results are also robust to including benchmark index fixed effects (see Panels C and D of
Table A5 in the Appendix), extending to the 2019 daily sample, using VIX instead of FSI as
a proxy for days with more costly secondary market arbitrage, defining high-stress dummy
using a top quartile or tercile of FSI, double-clustering standard errors by fund and date, and
controlling for fund family size and further fund-level characteristics, such as total primary
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Table 4: ETF Primary Market Features and Mispricing in 2020

This table reports the results of daily panel regressions of the end-of-day fund mispricing on network characteristics.
Panel A reports the estimate of β for the following specification (pooled high- and low-stress days):

Mispricingf,t = β × PrimaryMarket featuref + γ′Xf,t + δ′Yf + αMS + αt + εf,t

Panel B reports the estimates of β1 and β2 for

Mispricingf,t =β1 × PrimaryMarket featuref ×DLow F SI
t + β2 × PrimaryMarket featuref ×DHigh F SI

t +

+ γ′1Xf,t ×DLow F SI
t + γ′2Xf,t ×DHigh F SI

t + δ′1Yf ×DLow F SI
t + δ′2Yf ×DHigh F SI

t + αMS + αt + εf,t

The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is ETF mispricing, absolute
value of the relative premium of ETF share price over its net asset value per share, estimated with close prices. All network
features are as of 2019. Daily DHigh F SI equals 1 when the daily Financial Stress Index is above 0 (stress above average, as
per OFR definition). DLow F SI = 1 when the daily Financial Stress Index is negative. Last row of the table reports results of
a t-test that β2−β1 = 0. Daily controls include bid-ask spread on the ETF share and its square, daily benchmark index return
and its square, and daily turnover of ETF shares on the exchange. Other controls are fund characteristics: logarithms of fund
size and age (as of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket size, PM transaction
fee and net expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of creation and redemption
fees. Primary market features are defined in Section 4.2.3, these features are demeaned before we build the interaction variable.
All regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors clustered
by fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

PM activity PM diversity Connectedness Share of direct
PM volume

Panel A: Primary market features as of 2019, no interactions
Primary market feature -1.605** -2.405* -0.976** -1.843

(-2.40) (-1.82) (-2.17) (-1.27)
Observations 109,134 109,134 109,134 109,134
Within R2, % 16.3 16.3 16.3 16.3

Panel B: Primary market features as of 2019, interactions with FSI
Primary market feature ×DLowFSI -0.920 -1.398 -0.711 -1.014

(-1.57) (-1.24) (-1.65) (-0.76)
Primary market feature ×DHighFSI -3.495*** -5.092** -1.705** -4.003**

(-3.27) (-2.31) (-2.58) (-1.98)
Transaction fee ×DLowFSI 0.057 0.056 0.077* 0.070

(1.23) (1.19) (1.73) (1.54)
Transaction fee ×DHighFSI 0.313*** 0.327*** 0.406*** 0.365***

(3.60) (3.60) (4.71) (3.94)
Observations 109,134 109,134 109,134 109,134
Within R2, % 16.9 16.9 16.8 16.8

Primary market feature High-Low -2.575*** -3.694** -0.994* -2.989**
(-3.29) (-2.22) (-1.93) (-2.32)
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market turnover in 2019 and ETF derivatives availability.56

Our findings corroborate the fact that ETF mispricing is higher in times of market
turmoil (Madhavan and Sobczyk (2016)), and we document that this increase is weaker for
funds with larger and more diverse networks. Using European data, Aquilina, Croxson,
Valentini, and Vass (2020) show that some of the usual ETF liquidity providers may become
inactive during a crisis, but that alternative providers could step in. This would suggest that
larger networks enlarge the pool of potential arbitrageurs. In our data, however, we do not
observe an increase in the number of active APs during 2020.57 One potential explanation is
the institutional difference between the US and European markets: In the US, arbitrageur
substitution could happen between prime broker clients rather than across prime brokers.
In addition to that, our theoretical analysis in Section 6.1 implies that the substitution of
arbitrageurs depends on their cost distribution and that most of the activity is likely to be
accommodated by APs who were active prior to the crisis.

5.4 ETF Primary Market Flows and Mispricing

Next, we explore how ETF primary market structure relates to the actual capital
flows in ETF primary markets. We document that higher PM activity translates into larger
sensitivity of ETF flows to fund mispricing. Similar to Pan and Zeng (2019) and Dannhauser
and Hoseinzade (2021), we use past ETF premium as a proxy for perceived arbitrage oppor-
tunities and study the sensitivity of daily ETF net flows to these arbitrage opportunities.
Daily net flows are of key interest because they characterize activity in ETF primary markets,
even though they are a noisy proxy for arbitrage activity of APs.58

As Table 5 documents, we find that US equity ETF flows, measured as relative
changes in ETF shares outstanding, are highly sensitive to arbitrage opportunities. On
average, a fund sees an inflow if its shares are priced at a premium to its NAV, consistent
with arbitrageurs buying a relatively underpriced basket and converting it to ETF shares.
Similar to the results of Pan and Zeng for bond ETFs, we see that this sensitivity goes down
56Appendix Table A9 shows that estimates are very similar when additional fund characteristics are included.
57This is based on unreported tests. Although there is no significant change in the number of active APs,
the number of registered APs, PM diversity and share of direct PM volume grew in 2020. We only observe
annual AP activity, which limits the conclusions that can be drawn from this analysis.

58Some of the flows are originated by ETF end investors and not arbitrageurs. These are typically institutions
placing orders large enough that they require APs’ help in executing them. However, such investors seek
to gain exposure to the ETF basket so they should trade at the lowest available price. We expect them to
buy ETF shares on the exchange when the shares are underpriced and through an AP otherwise. Similarly,
investors should sell on the exchange when the shares are overpriced and to an AP otherwise. We explore
the implications of such trading using 13F institutional ownership of ETFs in Section 6.4. Our analysis
suggests that investor flows do not contribute to ETF flow-premium sensitivity.
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Table 5: ETF Flows and Mispricing

This table reports the results of daily panel regressions of the primary market flows on end-of-day fund mispricing. We estimate
the following specification:

Flowf,t = β × Premiumf,t−1 + γ′Xf,t−1 + δ′Yf + αMS + αt + εf,t

The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is daily net flow
(percentage change in fund shares outstanding). The main independent variable is lagged ETF premium, i.e., the relative
premium of ETF share price over its net asset value per share (in percent). Daily DHigh F SI equals 1 (DLow F SI

t = 0) when
the daily Financial Stress Index is above 0 (stress above average, as per OFR definition). PM activity is the demeaned log
number of APs with nonzero primary market volume in 2019. Daily (lagged) controls include bid-ask spread on the ETF
share and its square, daily benchmark index return and its square, and daily turnover of ETF shares on the exchange. Other
controls are fund characteristics: logarithms of fund size and age (as of 2019), benchmark index volatility of daily returns in
2019, logarithm of creation basket size, PM transaction fee and net expense ratio (in bps), and in-kind redemption dummy.
Transaction fee is the average of creation and redemption fees. All regressions include Morningstar Investment Category and
date fixed effects. t-statistics based on standard errors clustered by fund are in parentheses. Significance levels are marked as:
∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF daily flows, percent

(1) (2) (3)

ETF premium 0.420*** 0.502***
(10.31) (10.77)

ETF premium ×DLowFSI 0.569***
(9.60)

ETF premium ×DHighFSI 0.332***
(6.64)

PM activity -2.895
(-1.33)

ETF premium × PM activity 0.224***
(3.30)

Observations 108,047 108,047 108,047
Within R2, % 0.7 0.7 0.8

ETF premium High-Low -0.237***
(-3.37)

in high-stress times.59

Importantly, we document that the flow-premium sensitivity is higher if the activity
in ETF’s PM network is higher. Since the coefficient on the interaction with the number
of active APs is large and positive, more activity in the network is associated with a higher
sensitivity of ETF flows to perceived arbitrage opportunities. This result suggests that PM
activity contributes to the efficacy of the arbitrage mechanism. Consistent with this view,
59We define high-stress times as days with a positive OFR Financial Stress Index, but the results are similar
if we use VIX instead. Furthermore, our model in Section 6.1 provides a different explanation for this
pattern: If arbitrageur costs rise in high-stress times, the number of active APs decreases and lowers flow
sensitivity to a demand shock.
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our model in Section 6.1 predicts that the sensitivity of arbitrage trading to demand shocks
increases in the number of active APs.

6 ETF Mispricing and AP-specific Costs

In this section, we suggest an explanation for our findings. We formulate a model
in which arbitrage between identical assets is limited due to costs of arbitrage as well as a
limited number of potential arbitrageurs. Equilibrium mispricing in such a model depends
on the degree of imperfect competition and the average arbitrage costs. We present further
empirical evidence corroborating the importance of the second component (arbitrage costs)
in our data. We argue that the number of potential arbitrageurs is important for ETF
mispricing as long as it helps mitigate shocks to AP-specific costs.

Our model is agnostic on the nature of AP-specific arbitrage costs. As we discussed in
Section 2.2, one can think of many sources of cost heterogeneity across APs in ETF markets:
differences in inventory costs stemming from activities outside AP business, balance sheet
usage costs (regulatory costs channel), differences in risk management and trading technology
– and our data do not allow us to fully differentiate between them. However, the tests in
this section are most consistent with the regulatory costs channel.

In ETF markets, regulatory costs may matter in at least two ways. First and most
intuitive, these costs were shown to affect inventory management of bond dealers, hence
bond liquidity and, ultimately, bond ETF arbitrage incentives (Pan and Zeng (2019)). APs
are highly regulated entities: most of them are banks and almost half are global systemically
important banks. We therefore expect them to incur the highest regulatory costs.60 Second,
when an AP offers institutional brokerage services, regulatory costs are likely to contribute
to the brokerage charges. We refer to such costs as balance sheet usage costs throughout the
paper.

Also, prime brokers may have different margin requirements and dynamically adjust
them on days with high market stress. Such heterogeneity in required margins is obser-
vationally equivalent to our results: higher required margins impede arbitrage.61 However,
60More specifically, they are required to maintain higher capitalization ratios. The literature has connected
these banks’ ability to provide balance sheet space for arbitrage activities to capital restrictions, see, e.g.
Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel (2020). Prior literature has also shown that leverage
ratio regulations impede the matched-book intermediation of banks (Correa, Du, and Liao (2020)), and
that the provision of short-term funding cannot be fully substituted for by reserves (Copeland, Duffie, and
Yang (2021)). Furthermore, Copeland, Duffie, and Yang also point out that the quantitative easing helps
relax the scarcity of reserves but only at the cost of a more binding leverage ratio.

61In support of this view, we see that our results are stronger for ETFs with benchmark volatility above the
sample median (see Appendix Table A17).
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positions in physically replicated ETFs are usually easily cross-collateralized with their under-
lying baskets. Moreover, recent literature documented that in various markets Value-at-Risk
constraints (what makes margins sensitive to high-stress times) are not as binding under
the regulations that were introduced in the aftermath of the Global Financial Crisis (Bo-
yarchenko, Eisenbach, Gupta, Shachar, and Tassel (2020)). For these two reasons, we lean
towards the importance of costs rather than margins for ETF mispricing, even though both
costs and funding liquidity are very similar in our setup, and both highlight the pass-through
of regulatory costs in ETF markets.

6.1 The Model of Costly ETF Arbitrage

We consider a one-period, two-date model of arbitrage that is similar to the models
in Gromb and Vayanos (2002) and Fardeau (2020). In our model, oligopolistic arbitrageurs
compete to eliminate the mispricing between two segmented markets. Agents make invest-
ment decisions on date 1 and obtain profits on date 2. We assume that the dynamic concerns
of APs related to correcting mispricing are negligible, and that the process of eliminating
ETF mispricing can be modeled as a sequence of one-period games.

The key feature of our model is that the arbitrage costs are assumed to be proportional
to the gross arbitrage position size. Such a cost structure implies that both active and inactive
arbitrageurs co-exist in equilibrium. We solve for the pure strategy Nash equilibrium and
derive the expression for equilibrium mispricing as a function of arbitrageur costs. In the
model, changes in AP costs produce a weaker effect on mispricing for funds with larger
primary markets.

6.1.1 Model Setup

There are two asset markets. Each market consists of one riskless asset with a unit
return and one risky asset, A or B. Risky assets pay uncertain but identical dividends on
date 2, δA2 = δB2 = δ2. These dividends are distributed as δ2 ∼ N(δ, σ2). The assets are in
equal positive net supply, sA = sB = s. On date 1, the assets are traded at prices pA and
pB.

Each market is populated by a unit mass of price-taking investors. We assume an
exogenous market segmentation: some investors are only able to invest in asset A and the
riskless asset (A-type investors), while others are only able to invest in asset B and the
riskless asset (B-type investors).62 Investors derive utility from their wealth on date 2. For
62This assumption is standard in the literature and is required to generate mispricing.
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tractability, we assume investors have CARA utility with the risk-aversion coefficient γ:

Ui(wi,2) = E1 [−exp(−γwi,2)] , i = A,B

On date 2, investors receive an endowment proportional to the dividends: uiδ2. The
proportionality coefficient ui is different for the two investor types, and is known on date 1.
Following Gromb and Vayanos (2002), we assume for simplicity that uA = −uB = u.

Investors solve the following maximization problem:

max
yi,1

E1 [−exp(−γwi,2)]

s.t. wi,2 = wi,1 + yi(δ2 − pi,1) + uδ2.
(5)

In the absence of other market participants, the solution of this maximization problem
and the market clearing condition yi = si provide the expressions for equilibrium prices and
for mispricing:

pA = δ − γσ2(s+ u),

pB = δ − γσ2(s− u),

MispNoArb1 ≡ pB − pA = 2uγσ2.

The expected endowments on date 2 are a shock to investor demand on date 1. The
demand for the risky security is lower if the dividend payment is positively correlated with
the endowment. Without loss of generality, we assume that u is positive, and thus without
arbitrageurs pA < pB.63 The resulting mispricing on date 1 is proportional to the size of the
demand shock, the risk aversion, and the variance of the dividends.

Next, we introduce the discrete number N ≥ 1 of the price-setting agents, or arbi-
trageurs. These arbitrageurs operate in markets A and B, and generate profits by buying
cheaper security and simultaneously selling the more expensive one. Arbitrageurs are risk-
neutral and seek to maximize their profits. Importantly, arbitrageurs are only allowed to
implement pure arbitrage strategies, i.e., they are forbidden from taking any risk associated
with future dividends. Thus, for arbitrageur n, the demand for security A must be equal in
magnitude and opposite in sign to the demand for security B: xAn = −xBn ≡ xn.64 Finally,
we assume that arbitrageur n pays fixed costs Cn per gross invested dollar. Thus, the total
costs to arbitrageur n are equal to Cn|xn|(pB + pA).

Arbitrageurs compete to eliminate mispricing in a Cournot oligopoly setup, and solve
63Note that in the absence of market segmentation, A- and B-type investors could perfectly insure each
other.

64Similar to Gromb and Vayanos (2002).
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the following maximization problem:65

max
xn

[xn(pB − pA)− Cn|xn|(pB + pA)]

s.t. pA = δ − γσ2
(
s−

N∑
k=1

xk + u

)

pB = δ − γσ2
(
s+

N∑
k=1

xk − u
)
.

(6)

Substituting prices, we end up with the following unconstrained problem for arbi-
trageur n:

max
xn

[
xnγσ

2
(
u−

N∑
k=1

xk

)
− Cn|xn|p̄

]
, (7)

where p̄ ≡ δ − γσ2s is the average of pA and pB.

6.1.2 Model Equilibrium

In this subsection, we solve for the model equilibrium and formulate its main prop-
erties. The proposition below describes the equilibrium of the model. The proof is provided
in Appendix B.

Proposition 1
Assume that N arbitrageurs solve maximization problem (7), and that all of them

incur different costs such that: C1 ≤ C2 ≤ ... ≤ CN .
Then,
(a) Problem (7) has a unique pure strategy Nash equilibrium:
If C1 ≥ uγσ2

p̄
, then there is no trading.

If C1 <
uγσ2

p̄
, then arbitrageurs 1, ..., n with Cn such that

Cn <
uγσ2

np̄
+ 1
n

n−1∑
k=1

Ck (8)

trade, while arbitrageurs n+ 1, ..., N are inactive.
(b) For trading arbitrageurs, the equilibrium allocations are:

xi = 1
1 +Nact

u+ 1
1 +Nact

p̄

γσ2

∑
k 6=i
k∈act

Ck −
Nact

1 +Nact

Ci
p̄

γσ2 , (9)

65Note that equilibrium demand functions and prices do not depend on whether arbitrageurs convert secu-
rities or establish a long-short position.
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where Nact is the number of active arbitrageurs.
The equilibrium mispricing is equal to

Misp1 = 2uγσ2

1 +Nact

+ 2p̄
1 +Nact

∑
j∈act

Cj. (10)

The level of mispricing (10) depends on the number of arbitrageurs and on their
trading costs. The first term is the level of mispricing without arbitrageurs (recall that
MispNoArb1 = 2uγσ2) weighted by 1 + Nact, and the second term corresponds to the pass-
through of arbitrageurs’ trading costs. Notably, when the number of arbitrageurs increases
(given the average level of costs), the second term prevails. In the limiting case of infinitely
many actively trading arbitrageurs, mispricing does not depend on the initial demand shock
u, and is determined solely by costs. In the case of zero costs, all arbitrageurs trade actively,
but mispricing still exists and is only eliminated when the number of arbitrageurs becomes
infinitely large.

6.1.3 Illustration: Uniform Cost Distribution

Proposition 1 provides the general solution for the arbitrageurs’ maximization prob-
lem. However, under an arbitrary cost structure, equilibrium allocations and mispricing
cannot be expressed as a function of exogenous variables in a closed form. Thus, in this
subsection, we consider a specific cost structure that allows us to express mispricing as a
function of demand shock u, investors’ risk-aversion γ, dividend variance σ, the number of
arbitrageurs N , and arbitrageurs’ costs. A and B markets are an ETF and its underlying
asset, respectively.

We model the ETF primary market asN arbitrageurs with costs uniformly distributed
on [C;C].66 That is, Ci = C + C−C

N
i for i = 1, ..., N . The secondary market consists of

S identical arbitrageurs with CS costs. As seen from Proposition 1, in equilibrium, the
secondary market arbitrageurs are all actively trading or are all inactive, depending on the
relative parameter values.

If the secondary market is large and active, the equilibrium mispricing is primarily
determined by its costs CS. In fact, it follows from Proposition 1 that if the number of
arbitrageurs in secondary market S is large enough, no arbitrageurs from the primary market
with costs higher than CS are active in equilibrium. n denotes the number of primary market
arbitrageurs with costs below or equal to CS. The equilibrium mispricing, according to (10),
66For the problem to have a non-trivial solution, it must hold that C < uγσ2

p̄ .
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equals:

Misp = 2uγσ2

1 + n+ S
+ 2p̄

1 + n+ S

(
SCS + nC + C − C

N

n(n+ 1)
2

)
.

When S increases, Misp tends to 2p̄CS.
If, on the contrary, the costs of arbitrage for the secondary market are prohibitively

high, mispricing will be determined by the structure of primary market. The general formula
for mispricing is:67

Misp = 2uγσ2

1 +Nact

+ p̄(C − C)Nact

N
+ 2p̄C Nact

1 +Nact

=

= 2uγσ2

1 +Nact

+ 2p̄Nact

N

(
C + C

2 + C
(

N

1 +Nact

− 1
))

(11)

where Nact =
[

1
2

(√
1 + 8N(uγσ2−Cp̄)

p̄(C−C) − 1
)]

, and where square brackets denote the integer
part.

As follows from (11), larger primary market networks (i.e., a larger N) induce lower
equilibrium mispricing while higher average arbitrage costs (i.e., C+C

2 ) result in higher mis-
pricing, which is consistent with the empirical results in Section 5. In periods of high volatil-
ity, when the costs of establishing an arbitrage position are higher (especially for secondary
market participants, who cannot simply convert one security into the other and need to wait
before prices converge to extract profits), the observed mispricing is determined by primary
market properties.

Next, we consider what happens to equilibrium mispricing when the leading arbi-
trageur (i.e., the arbitrageur with the lowest costs) is driven out of the market. As follows
from the above, the difference in mispricing would be small with the large and active sec-
ondary market, and would move towards zero as the number of secondary market arbitrageurs
increases. If the secondary market is not active, the mispricing increase is equal to68

∆Misp = Nact

1 +Nact

2p̄(C − C)
N

,

where Nact =
[

1
2

(√
1 + 8N(uγσ2−Cp̄)

p̄(C−C) − 1
)]

. With a larger ETF primary network N (given
average costs), the effect on mispricing of the leading arbitrageur’s exit is lower. This model
prediction is in line with the empirical results in Section 6.3 below. When the lead arbitrageur
67The proof is provided in Appendix C.
68When the leading arbitrageur is driven out, another arbitrageur with higher costs may or may not step
in, depending on model parameters. Here, we consider the case when she steps in. The other case can be
solved similarly.
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of an equity ETF is engaged in the Federal Reserve’s SMCCF Program, the costs of using
the balance sheet space increase; this increase keeps the equity ETF arbitrage from being
profitable. The arbitrageur is thus inactive in the ETF’s primary market, and the equilibrium
mispricing for the equity ETF increases. This effect is stronger for ETFs with less diverse
networks.

6.2 AP Heterogeneity and ETF Mispricing

The general formula for equilibrium mispricing (10) predicts that, all else equal, the
observed level of mispricing is defined by the number of active arbitrageurs and the average
arbitrage costs at an ETF level. In this section, we discuss the relative importance of
competition versus average costs and provide further evidence for AP heterogeneity that we
assume in the model.

6.2.1 The Actual Concentration in ETF Primary Markets

As we described earlier, one cannot characterize the number of arbitrageurs in ETF
markets by the number of active or registered APs. First, any investor can trade on ETF
mispricing on the secondary market (exchange). Second, even though the observed number
of primary market participants is limited, a larger number of arbitrageurs can trade in ETF
primary markets through APs. Therefore, to gauge the actual degree of concentration in
these markets, one needs to take into account such indirect primary market participants. We
do so by looking into the size of APs’ prime brokerage clientele with a help of ADV filings.

Specifically, we follow Jiang (2021) and Boyarchenko, Eisenbach, Gupta, Shachar, and
Tassel (2020) to identify connections between hedge fund advisors and their prime brokers
in the US and then link prime brokers to APs in our sample. We hence assume that only
hedge fund clients could potentially trade on ETF mispricing. Details on data collection are
in Appendix A.5.

According to the ADV data, a median AP has 12 clients with $1,32 trillion in gross
assets. Prime brokerage connections are fairly concentrated, that is, clients of one AP overlap
little with the clients of another. We find that the number of unique clients who can access
a median ETF in our sample is as high as 1,147, with the first and 99th percentiles at 263
and 1,978, respectively. Therefore, given the size of AP clientele, the imperfect competition
channel is unlikely quantitatively important for ETF mispricing.
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6.2.2 Evidence on Importance of AP-Specific Costs

Next, we study the relationship between AP-specific costs and ETF mispricing. In
the absence of measurements of arbitrage costs, we use observable AP characteristics that
are likely to be related to such costs, namely: AP size (total assets at a holding company
level in 2019), total AP primary market volume (the 2019 volume as reported in N-CEN
filings), AP centrality in the equity ETF-AP network (the 2019 PageRank centrality),69 and
the size of AP prime brokerage clientele (according to ADV filings as we described above).
We therefore assume that arbitrage costs are lower when an AP is larger, more connected
with equity ETFs, has a higher primary market volume and more prime brokerage clients.

To test model prediction (10) with respect to AP costs, we simply regress the daily
mispricing on each AP feature, similar to our analysis in Section 5.3, additionally controlling
for the number of active APs. As earlier, all features are projected to the ETF level: we
take the simple average of each AP feature across the active APs of the fund. As Panel B of
Table 6 reports, all four AP features are negatively related to ETF mispricing. These results
emphasize that the composition of APs in ETF primary market (not only their number) is
related to ETF mispricing.

6.2.3 ETF Primary Market and Mispricing Comovement

We also exploit information about AP identities to provide further evidence on the
importance of AP heterogeneity. If shocks to AP-specific costs get passed through to mis-
pricing, we expect that the mispricing of ETFs sharing the same APs will comove. Consistent
with that, we show that the correlation of mispricing between two ETFs in our US equity
sample is related to the commonality in their active AP network.

We explore whether the correlation of mispricing between two ETFs in our US equity
sample is related to the number of common active APs. Results are reported in Table 7. If
two ETFs have twice as many common active APs, the correlation of their daily mispricing in
2020 is almost 4 percentage points higher on average. The magnitude is conditional on ETFs
having similar benchmark indices, belonging to the same fund family or investment category,
and after including both funds’ fixed effects. This result is fully driven by high-stress times
when having twice as many common active APs is associated with 5 percentage points higher
correlation. Finally, we find no significant relationship between mispricing correlation and
the number of common active APs for funds with a larger than the median number of active
APs.
69It is the most widespread measure of centrality in the network literature. According to PageRank centrality,
a node is important if it is highly connected or if it is linked to highly connected nodes, adjusted by the
number of these influential nodes’ connections.
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Table 6: ETF Mispricing and AP Heterogeneity

This table reports the results of daily panel regressions of the end-of-day fund mispricing on primary market characteristics
(averaged AP features):

Mispricingf,t = β ×AP featuref + γ′Xf,t + δ′Yf + αMS + αt + εf,t

Panel A does not include the conrol for PM activity while Panel B does.
The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is ETF mispricing,

absolute value of the relative premium of ETF share price over its net asset value per share, estimated with close prices. All AP
features and PM activity are as of 2019. Daily controls include bid-ask spread on the ETF share and its square, daily benchmark
index return and its square, and daily turnover of ETF shares on the exchange. Other controls are fund characteristics:
logarithms of fund size and age (as of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket
size, PM transaction fee and net expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of
creation and redemption fees. The AP features are defined in Section 6.2. All regressions include Morningstar Investment
Category and date fixed effects. t-statistics based on standard errors clustered by fund are in parentheses. Significance levels
are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

Active AP size Active AP
volume

Active AP
centrality

Average no.
clients

Panel A: Not controlling for PM activity
AP feature -0.536*** -1.799*** -333.309*** -1.069***

(-4.10) (-4.24) (-5.32) (-3.32)
Observations 109,134 109,134 109,134 109,134
Within R2, % 16.6 16.6 16.7 16.5

Panel B: Controlloing for PM activity
AP feature -0.484*** -1.807*** -310.081*** -0.943***

(-3.66) (-4.51) (-4.91) (-2.83)
PM activity -1.006* -1.627*** -0.970* -1.007

(-1.68) (-2.79) (-1.66) (-1.61)
Observations 109,134 109,134 109,134 109,134
Within R2, % 16.6 16.8 16.7 16.6
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Table 7: ETF Primary Market and Mispricing Correlation

This table reports the results of estimating the following specification:

Correlation(Mispricingi,Mispricingj) = β × Common Active APsij + γ′Controlsij + εij

The regression is estimated on a cross-section of pairs of US equity ETFs in 2020. The dependent variable is the correlation of
daily mispricing of two ETFs (i and j). Common Active APs measure equals the log of one plus the number of APs active in
both funds of the pair.

In column (3), the correlation is estimated within March 2020 to June 2020 for high FSI months (i.e., months with positive
FSI for the majority of trading days) and on the rest of 2020 for low FSI months. The specification includes high-FSI dummies
and interactions with all pair controls as well.

In column (4), only ETFs with the number of active APs above 7 (sample median) are included into the test.
Controlsij include pair characteristics: benchmark returns correlation, a dummy for whether the funds have the same

benchmark, a dummy for whether funds belong to the same family, a dummy for whether funds belong to the same Morningstar
investment category.

All columns except for (1) include fixed effects for each fund in the pair. t-statistics based on standard errors double
clustered by fund i and fund j are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing correlation

(1) (2) (3) (4)

Common Active APs 0.074*** 0.050*** 0.007
(7.16) (5.66) (0.45)

Common Active APs × Low-FSI months -0.010
(-1.26)

Common Active APs × High-FSI months 0.075***
(7.57)

Sample All All All No. APs ≥ 7
Observations 87,571 87,571 175,142 23,653
Adjusted R2 7.3 37.9 49.6 38.9
Fund i + Fund j FE No Yes Yes Yes
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6.3 Evidence From the Federal Reserve’s Bond-Buying Program

To provide more insight into the nature of AP-specific costs, we show that the ETFs
most exposed to the Federal Reserve’s bond ETF purchase program through their APs also
experience higher mispricing. We interpret this result as evidence of the pass-through of the
APs’ regulatory balance sheet usage costs. Our results also highlight the interconnectedness
of funds in their primary market networks, as mispricing in US equity ETFs is affected by
the Federal Reserve’s purchases of US bond ETFs.

We hypothesize that the implementation of the SMCCF program had an adverse
spillover effect on equity ETF mispricing.70 During the implementation of the program,
AP capital was involved in purchasing bonds in order to satisfy the demand of the Federal
Reserve (see details in Appendix Tables A10 and A11). As most active APs are banks
that comply with banking regulations (in particular, Basel III), allocating space to bond
purchases on their balance sheet is costly. Moreover, capital within financial institutions
may also be slow-moving (Siriwardane (2019) and Duffie (2010)). Taken together, these two
observations suggest that allocation of room for the Federal Reserve’s purchases shifts the
capital internally to a bond desk and, hence, raises the break-even condition for equity ETF
trades. For funds whose APs are involved in the program, this leads to higher mispricing,
especially during high-FSI days when APs are marginal. The effect is expected to be more
pronounced for funds whose APs are more exposed to the program (relative to their usual
operations in the bond ETF market). Additionally, some effects may be observed during the
run-up period, as it may take time for APs to reallocate capital across specific desks.

To test our hypothesis, we construct the measure of an AP’s relative exposure to the
program using data on ETF purchases.71 For each AP, we divide the total dollar volume of
bond ETFs bought by the Federal Reserve through the given AP during the first five weeks
of the program by the total volume of the AP’s primary market activity in bond ETFs in
2019 (scaled by 5/52 to allow comparison with the five-week period):

AP Exposurei = FEDETF Purchasesi
Total BondETF V olume 2019i

. (12)

We interpret this measure as a proxy for the adjustment that is required to the AP’s books
70A comprehensive overview of the program is offered in Boyarchenko, Kovner, and Shachar (2020). We
provide details relevant to our test in Appendix A.6.

71One limitation of our analysis is that we cannot deduct expected volumes by the seller in real time.
In other words, the balance sheet space requirement expected by the APs at the time of the Federal
Reserve’s announcement was different from the eventually needed space. More specifically, the SMCCF
was underutilized: According to the Federal Reserve’s website, the SMCCF size peaked at around $14
billion instead of the announced $250 billion. This might be the reason for the observed spillovers during
the announcement period.
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relative to the normal level of activity. To study mispricing at a fund level, we use the
exposure of AP that was most active in the fund in 2019 (lead AP).72 AP-level exposures
are reported in Appendix Table A10 and descriptive statistics of the fund-level exposure in
our final sample are shown in Appendix Table A12.

A potential concern with our measure of exposure is that the denominator in definition
(12) might not be a relevant comparison metric for the size of the purchases. If the Fed’s
buy order is small enough, an AP may be able to source the necessary bond ETF shares
from the secondary market, which would less likely require the use of any balance sheet
space. In Appendix Table A13, we show, however, that bond ETFs with larger SMCCF
trades experience contemporaneous inflows.73 This suggests that APs had to tap into ETF
primary markets.

The negative spillover effect on the equity ETF mispricing of AP exposure to the
SMCCF implies a positive β coefficient in the following regression, estimated during the
program implementation:

Mispricingf,t = β × LeadAP Exposuref + γ ′Xf,t + δ′Yf + αMS + αt + εf,t, (13)

where Mispricingf,t is mispricing of fund f shares on day t. Xf,t is a vector of fund
characteristics on day t, and Yf is a vector of fund characteristics as of 2019 (see Section
5.3). αMS are Morningstar Investment Category fixed effects and αt are date fixed effects.

We find that funds with lead APs who are more engaged in the Federal Reserve’s
purchasing program exhibit higher mispricing during the program implementation. In col-
umn (1) of Panel A in Table 8, we estimate Equation (13) on the implementation sample
from May 12 to June 17, 2020. The β coefficient is positive and statistically significant. The
economic effect, however, is quite small: the average LeadAP Exposure adds an average of
0.15 basis points to the mispricing of related equity funds. During the announcement pe-
riod, the effect on mispricing is similar in magnitude to the effect of implementation (column
(2)). This suggests some anticipatory adjustment to the balance sheet, consistent with slow
moving capital. There is no effect during the placebo period (column (3)).

In order to test whether the effect stems from high-FSI periods, when other arbi-
trageurs are less likely to get involved, we interact the exposure variable with the FSI value
in column (4), similar to our earlier analyses. We see that during days with higher FSI, the
effect is twice as strong.
72Any AP can potentially correct ETF mispricing. Correspondingly, we see that the spillovers are concen-
trated in funds with fewer previously active APs.

73Our tests include fund and date fixed effect and go through when we consider all funds or funds with
nonzero Fed purchases only.
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Table 8: Mispricing and AP Exposure to FED Bond-Buying Program

This table reports the results of estimating the following specification:

Mispricingf,t = β × LeadAP Exposuref + γ′Xf,t + δ′Yf + αMS + αt + εf,t

where LeadAP Exposuref is AP Exposure of the lead AP of the fund. AP Exposurej is AP j’s exposure to the program, that
is, the amount of bond ETF purchases through this AP relative to the total bond ETF primary market volume of this AP in
2019:

AP Exposurej =
FEDETF PurchasesAPj

Total BondETF V olume 2019j

The regression is estimated on a daily panel of US equity ETFs in the respective period. The announcement period (‘Announc’)
is from March 23, 2020 to May 11, 2020; the implementation period (‘Impl’) is from May 12, 2020 to June 17, 2020; the placebo
period (‘Placebo’) is from May 12, 2019 to June 17, 2019. We describe the program and the construction of FED shocks in
more detail in Section 6.3. FSI is the daily value of the OFR Financial Stress Index. No. of active APs is as of 2019 and 7 is
its median value. All regressions include controls for fund characteristics: logarithms of size and age (as of 2019), logarithm of
creation basket size, transaction fee, net expense ratio, in-kind redemption dummy, daily bid-ask spread on the ETF share and
its square, daily benchmark index return and its square, and daily turnover of ETF shares on the exchange. All regressions
include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors clustered by fund are in
parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

Sample Impl Announc Placebo Impl Impl
(1) (2) (3) (4) (5)

Lead AP exposure 1.49*** 1.95** 0.55 0.83**
(3.06) (2.05) (0.65) (2.10)

Lead AP Exposure × FSI 0.75**
(2.24)

Lead AP Exposure × No. of active APs ≤ 7 2.11***
(2.80)

Lead AP Exposure × No. of active APs > 7 0.59
(1.30)

Observations 11,232 15,118 10,748 11,232 11,232
Within R2, % 21.8 18.4 20.2 21.9 21.9

Finally, we explore whether a larger ETF-AP network helps mitigate the spillover
effect of shocks to lead APs. We interact the exposure variables with a dummy that equals
one if the number of active APs in the fund is above the sample median of 7.74 The effect is
only present in the subsample of funds with a smaller number of active APs.

Our results contribute to the literature on the mispricing and liquidity effects of
COVID-19. Haddad, Moreira, and Muir (2021) attribute the normalization of debt mar-
kets to the Federal Reserve’s announcement of bond purchases. Similarly, O'Hara and Zhou
(2021) argue that the liquidity normalization effects of the Federal Reserve’s facilities mate-
rialized in late March 2020 and at the announcement of the SMCCF. They do not find any
74Results are similar if we use the number of registered APs and its median instead.
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changes to corporate bond liquidity at the start of bond ETF purchases. Laipply and Mad-
havan (2020) argue that the large dislocations in corporate bond ETFs in March stemmed
from the staleness of NAV, and that the ETF arbitrage mechanism has functioned well
throughout the pandemic.75 Iwadate (2021) documents contagion between ETFs with sim-
ilar underlying assets. None of these papers considers differences in ETF primary market
networks or spillovers to equity ETFs.

6.4 Alternative Channels

In this section, we explore alternative explanations for our findings. We show that it
is unlikely that our results are driven by equity capital constraints of arbitrageurs, differences
in arbitrageurs’ evaluations of ETF mispricing, and limits to arbitrageur attention.

6.4.1 Capital Constraints

Capital constraints are one of the well-known limits to arbitrage. In our setup, pri-
mary market size could be correlated with the availability of arbitrage or end ETF investor
capital. Thus, a smaller primary market might imply a smaller amount of available arbi-
trage capital, hence larger observed mispricing. We therefore look for evidence that capital
constraints are binding in ETF markets.

First, with limited capital, if an arbitrageur has a better arbitrage opportunity else-
where in the ETF network, she will forgo eliminating mispricing in a particular ETF. We
build a measure of arbitrage opportunities for fund APs elsewhere in the ETF network and
do not see that larger outside opportunities76 are associated with higher mispricing or lower
flow-premium sensitivity. Test details and results are reported in Appendix Table A15. In
short, there is no evidence that outside arbitrage opportunities within the ETF universe are
positively related to fund mispricing.

Second, as we discussed in Section 5.4, trades originating from end ETF investors may
coincide with arbitrage flows. Specifically, when ETF shares are traded at a premium on the
exchange, an investor seeking to gain exposure to the ETF would purchase them through an
AP, thus triggering a creation. The only difference from AP’s perspective is that she would
sell ETF shares to the client and charge a commission rather than selling at a premium on
75Relatedly, Dannhauser and Hoseinzade (2021) explore the flow-induced pressure from the ETF arbitrage
mechanism in corporate bond markets during the Taper Tantrum. They show that funds with the smallest
amount of mispricing also saw the largest AP activity, suggesting an effective arbitrage mechanism.

76Our main measure of available arbitrage opportunities for a given ETF-AP pair is the dollar amount
needed to close mispricing net of fees in all the funds where the AP is active, except the fund itself. We
assume linear price impact and use Amihud (2002) illiquidity as the measure of price impact. See Table
A15 for details.
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the exchange. Hence, if the arbitrage capital is not sufficient, APs may use client orders to
benefit from mispricing. In that case, the flow-premium sensitivity should increase with the
flows of end ETF investors. However, we do not see such an increase using interactions with
changes in 13F institutional ownership (reported in Appendix Table A16).

6.4.2 NAV Calculation Disagreement

Beyond limits to arbitrage explanations, we conjecture that arbitrageurs’ disagree-
ment on real-time fund NAV could lead to the importance of networks as arbitrageurs would
then have different evaluations of arbitrage opportunities. Indeed, for larger primary mar-
kets, there is a higher chance that some arbitrageurs will have an evaluation of mispricing
higher than their break-even level.

First, this concern is relatively muted for US equities as they are liquid and continu-
ously priced. Second, we confirm that our results still hold even for funds where disagreement
is less likely. In Appendix Table A18, we split our sample into funds with a ‘simpler’ bench-
mark weighting (in particular, with market weights, modified market weights, and equal
weights) and all other funds (e.g., whose benchmark requires estimated quantities such as
risk factors). Results are very similar in these two subsamples, except for the coefficient
of direct PM volume share, which is only significant for funds with ’simpler’ benchmarks.
Furthermore, in Appendix Table A19, we subsample ETFs by their Morningstar Style Box
position in several ways and find that the network is almost equally important on high-
FSI days across all subsamples. All in all, we do not find support for the importance of
arbitrageurs’ disagreement in our data.

6.4.3 Arbitrageurs’ Inattention

We also explore whether arbitrageurs’ inattention may explain the importance of
larger primary markets. Even though arbitrageurs with access to ETF primary markets are
sophisticated and technologically savvy market players, they might not be able to attend to
every arbitrage opportunity.77

To assess the importance of inattention for ETF mispricing, we separate our 2020 daily
subsample into high-inattention and low-inattention days based on three different inattention
measures.78 As suggested by Appendix Table A20, the coefficients on PM activity on low- and
77Inattention has been shown to have effects in markets with sophisticated investors, such as mutual fund
managers (Kacperczyk, Nieuwerburgh, and Veldkamp (2016)).

78First, we separate Fridays as days with higher inattention, as suggested by Dellavigna and Pollet (2009).
Second, we consider days with higher than the median number of stock-level earnings announcements
(Hirshleifer, Lim, and Teoh (2009)). Third, we use key macroeconomic data announcements (Savor and
Wilson (2014)). See the details in Table A20.
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high-FSI days are only slightly larger in magnitude on high-inattention days. Importantly,
ETF primary market size is still as strongly related to mispricing on low-inattention days as
in our baseline results. Therefore, we do not see strong limits to arbitrageur attention with
respect to ETF mispricing, at least for the chosen inattention measures.

7 Conclusion

Exchange-traded funds depend on creation and redemption activity in their primary
markets. In this paper, we provide the first insight into the structure of the US ETF primary
markets using novel N-CEN regulatory filings.

We document that the network of ETF-AP connections has a dense core and a sparse
periphery. There is considerable variation in the number of connections held by US equity
ETFs, and in the concentration of these ETFs’ primary market activity. APs also differ from
each other in their connectedness to funds, and in how much they are regulated.

ETF markets are a good laboratory to study the limits to arbitrage: mispricing is
measurable, and only a limited number of market participants can trade on it risklessly. We
show that the level of mispricing in an ETF is related to fund network features, especially
in high-stress times and during short-selling halts on ETF shares. Our findings suggest that
AP balance sheet usage costs contribute to ETF mispricing. We further corroborate this
channel using the Federal Reserve’s purchases of bond ETFs in 2020. Regulatory costs have
been shown to affect no-arbitrage relationships in many asset markets. Our results indicate
the presence of these costs in liquid markets, and suggest that costs are passed directly to
ETF investors.

Our results highlight potential fragility in ETF primary markets since we find that
primary market characteristics relate to ETF mispricing in high-risk times and mispricing of
two funds comoves more if they share more APs. It seems important to us to conduct similar
studies in markets with a higher liquidity mismatch between an ETF and its underlying
basket, such as corporate bonds. Furthermore, we highlight that the specifics of the US
regulations make interpretation of N-CEN filings harder: because many APs are prime
brokers, the actual degree of concentration in the US ETF primary markets is still obscure.
Our findings therefore call for more detailed regulatory data on ETF primary markets to
facilitate further scientific inquiry in this direction.

The scope of our questions has been limited by time series availability. With only
several observed cross-sections of the ETF-AP relationships, we cannot address questions on
primary markets evolution or the effects of network changes on fund mispricing and other
characteristics. We see these questions as very promising avenues for future research.
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A Appendix

A.1 Details on Fee Calculations

In N-CEN data, fees are reported in a non-unified way because funds use different fee
schedules:

1. Dollars per creation unit (flat fee with respect to the price of ETF but not the number
of units) – type fee1

2. Dollars for one or more creation units purchased on the same day (flat fee with respect
to both the price and number of units) – fee2

3. A percentage of the value of each creation unit (proportional) – fee3

Fee3 is proportional and therefore easily comparable. We translate fee1 by dividing it by
the average basket value (average NAV times basket size) over the year. We use fee2 as
the upper boundary (it will be maximal in % terms if only one unit is traded). Finally, we
compute both the maximum and the minimum of the reported (non-zero) fees to get a range
for excess mispricing.

Moreover, transaction fee schedules may be asymmetric for creations/ redemptions
and cash/in-kind transactions. We compute both averaged metrics as well as separate ones
to pick up this asymmetry.

A.2 Details on N-CEN Parsing and Merge With Morningstar

We first merge all N-CEN subfiles on CIK, SeriesID, and ‘filed as of date’. We remove
files that were not ‘live’ or were for index/mutual funds. We remove cases when the filing
was applicable for less than 12 months. Out of the remaining multiple filings per year, we
keep the last one. Multiple filings arise due to updates, typically filed under form name
‘N-CEN/A’. We correct the ticker for series ‘S000060899’ to ‘RENW’. This leaves us with
2308 unique fund names.

We merge (1) Morningstar (MS) static variables and (2) MS-SEC map on SecId
(Morningstar fund identifier). Then we link the merged MS file to N-CEN dataset on ‘Ticker’.
Furthermore, we merge this to average annual prices from MS both on SecId and year. The
resulting file has 2894 tickers.

In this dataset, we clean AP names to get ‘AP_firm’ (AP holding company name)
and extract ‘AP_id’ (for that we use ‘LEI’, legal entity identifier). We use Factset to
trace parent holding companies for each broker. We remove missing names and missing
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‘AP_id’ and aggregate trading volumes to ticker-‘AP_id’ level. We manually clean cases
with duplicate funds per ticker (BCI, QTUM, KFYP, ADRE, GTO, JPIN, SDY). Then we
normalize fee data from N-CEN using reported basket sizes and average annual prices from
MS (to express all fees in % of creation unit value). This results in our ETF-AP annual
panel with 2116 unique tickers.

A.3 Structure of Virtu Financial Inc.

In our dataset, Virtu Financial has the following LEIs.

• 549300XG5LFGN1IGY C71 is Virtu Financial Ireland, a registered investment firm
under the Market in Financial Instruments Directive, and its primary regulator is the
Central Bank of Ireland.

• 54930088MP91Y ZQJT494 is Virtu Financial Bd Llc, a wholly owned broker-dealer
subsidiary of Virtu Financial.

• 5493006FX0HRY U3G2R47 is Virtu Financial Capital Markets , is another broker-
dealer subsidiary of Virtu Financial (this and the one above are registered U.S. broker-
dealers, and their primary regulators include the SEC, the Chicago Stock Exchange
and FINRA).

• 549300RA02N3BNSWBV 74 is Virtu Americas Llc, which was formed upon acquisi-
tion of KCG Holdings Inc. in April 2017. This is a clearing firm.

• 549300S41SMIODV IT266 is Virtu Itg Llc which was formed upon acquisition of ITG
by Virtu in March 2019.

The company describes its subsidiaries, their regulation, and financial interconnectedness in
its report to the SEC.79

A.4 ETF Data

A.4.1 Sources of ETF Data

We use CRSP and Morningstar for our standard ETF data. A fund’s total net assets
(TNA) and daily returns for NAV and ETF share price come from the CRSP stock file and
the CRSP Mutual Fund Database. Details on parsing the CRSP data are in Appendix A.4.2.
79Available at https://www.sec.gov/Archives/edgar/data/1592386/000104746915001003/a2219372zs-
1a.htm.
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Fund fees, benchmarks, investment categories, and other static data come from Morningstar,
as do our daily benchmark returns. Fund benchmarks and fund families (identified with
Branding Name) are a static snapshot from September 2020. We take daily fund shares
outstanding from Morningstar.80 We merge CRSP and Morningstar by fund ticker; details
of this merge are in Appendix A.2. We take ETF short interest from Compustat. We use
Thomson Reuters s34 tables to compute 13F institutional ownership of ETF shares,81 and use
Brian Bushee’s classification (Bushee (1998)) to split institutional ownership into transient,
dedicated, and quasi-indexer. To compute holdings-level measures, we use monthly fund
holdings from CRSP Mutual Fund Database.

A.4.2 Details on Preparing ETF Data in CRSP

We need both data on ETF stock and ETF assets, which we get from CRSP via
WRDS.

The first is the exchange data available in CRSP stock files, we set the share code
(SHRCD) to ‘73’ to get a list of ETF PERMNOs. From daily stock file we get stock price,
stock price return, outstanding shares (updated monthly), trading volume, bid, ask, high
price, and low price. There are 3278 unique PERMNOs.

The second is CRSP fund database and we find funds that ever had ‘et_flag’ equal
‘F’ to get all ‘crsp_fundno’ for ETFs. From the same table we get tickers and Lipper style.
We manually correct 4 tickers and 2 cusips for 4 funds. There are 3071 unique crsp_fundno.

We left-join fund numbers to daily PERMNO-level data on historical CUSIP and
summary date (quarterly frequency). Then, we left-join daily NAV fund returns (NAV
returns) by fund number and date. We drop funds with missing tickers. We also restrict the
sample to after 2015. This results in 2686 tickers. All of these have price and NAV data.

A.4.3 Filters

Our dataset is limited to ETFs for which we can merge N-CEN forms, i.e., 2,181
of the available ETFs in Morningstar (2,894 tickers). We use this entire ETF universe to
describe our network.

In our tests, we focus on US domestic equity ETFs. We exclude funds with less than
$10 million in assets, with net expense ratios higher than 3%, with a low correlation between
Morningstar and CRSP returns (below 95%), and that are younger than one year. We only
80Shares outstanding are reported with a lag in Morningstar. We lead the values by one day to align fund
flows with Bloomberg data.

81We thank Luis Palacios, Rabih Moussawi, and Denys Glushkov for making their code publicly avaiable on
WRDS.
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consider ETFs that are physically replicated and that have a confirmed benchmark.82 We
exclude funds that are inverse, leveraged, or fund-of-funds. US domestic equity funds are
defined by the US category group of Morningstar. To correct for classification errors, we drop
funds with the words ‘foreign’, ‘world’, ‘relative’, ‘global’, and ‘preferred’ in the Morningstar
category name. We also exclude funds with portfolio allocation to non-US equity of over
50% and to bonds of over 1%, on a net basis. The final sample of plain US domestic equity
ETFs is 438 funds.

82We manually check whether the benchmark in Morningstar aligns with the investment objective of the
fund. The excluded funds represent 0.3% of the original Morningstar ETF sample.
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Table A1

AP holding company Ticker Total
Assets, $bln

Market
Cap, $bln

G-
SIB

Primary
Dealer

Direct
investor

Number
of

entities
(LEI)

ABN AMRO Bank (DR) ABN (NL) 421000.0 17114.5 No No No 2
Bank of America BAC (US) 2444300.0 316770.7 Yes Yes No 4
Bank of Montreal BMO (CA) 648380.0 48106.3 No Yes No 2
Barclays PLC BARC (GB) 1510500.0 42107.8 Yes Yes No 1
BNP Paribas BNP (FR) 2333000.0 74043.6 Yes Yes No 2
Canadian Imperial Bank of Commerce CM (CA) 495760.0 35768.0 No No No 1
Cetera Financial Group Inc. 178.6 No No No 1
CF & Company Holdings LP 19662.9 No Yes No 2
Citigroup Inc C (US) 1957000.0 171315.0 Yes Yes No 2
Commerzbank AG CBK (DE) 520430.0 7753.0 No No No 1
Cowen Inc COWN (US) 5221.7 538.5 No No No 1
Credit Suisse Group AG CSGN (CH) 813030.0 35297.3 Yes Yes No 2
Daiwa Securities Group Inc. 8601 (JP) 220670.0 7750.4 No Yes No 1
Depository Trust Company (DTCC) No No No 1
Deutsche Bank AG DBK (DE) 1456600.0 17284.7 Yes Yes No 1
First Southwest Bancorporation Inc No No No 1
Flow Traders NV FLOW (NL) 7583.0 1119.5 No No Yes 1
FMR LLC (Fidelity) 89437.0* No No No 1
GFH HFEVA LLC (Citadel) 34346.0 No No Yes 2
Goldman Sachs Group Inc. GS (US) 993000.0 84282.1 Yes Yes No 3
Hilltop Holdings Inc HTH (US) 15244.0 2295.5 No No No 1
HSBC Holdings PLC HSBA (GB) 2715200.0 119075.1 Yes Yes No 1
Hudson River Trading LLC 4061.8 No No Yes 1
Industrial and Commercial Bank of China 1398 (HK) 4322500.0 70480.6 Yes No No 1
ING Groep NV INGA (NL) 1001000.0 46794.1 Yes No No 1
Interactive Brokers Group Inc IBKR (US) 71676.0 22325.5 No No No 2
Intesa Sanpaolo ISP (IT) 916100.0 46001.2 No No No 1
Itau Unibanco Holding SA Pfd ITUB4 (BR) 408760.0 83942.8 No No No 1
Jane Street Group LLC 16090.2 No No Yes 1
Jefferies Financial Group JEF (US) 49686.0 6604.4 No Yes No 1
JPMorgan Chase & Co JPM (US) 2687400.0 437736.6 Yes Yes No 3
Macquarie Group Limited MQG (AU) 144670.0 21446.3 No No No 1
Mitsubishi UFG Financial Group Inc 8306 (JP) 3117700.0 69948.1 Yes No No 1
Mizuho Financial Group 8411 (JP) 1988400.0 39205.3 Yes Yes No 1
Morgan Stanley MS (US) 896800.0 84960.1 Yes Yes No 1
National Bank of Canada NA (CA) 214140.0 19356.7 No No No 1
Natixis KN (FR) 576030.0 13999.4 No No No 1
NatWest Group PLC NWG (GB) 957800.0 38811.1 No Yes No 1
Nomura Holdings Inc 8604 (JP) 407580.0 16426.7 No Yes No 1
Peak6 LLC 205.3 No No No 1
Royal Bank of Canada RY (CA) 1087200.0 153507.3 Yes Yes No 1
Societe Generale GLE (FR) 1522500.0 27583.2 Yes Yes No 2
State Street Corporation STT (US) 245610.0 28900.2 No No No 2
Stifel Financial Corp SF (US) 24854.0 6034.4 No No No 1
The Bank of New York Mellon Corporation BK (US) 381510.0 46072.9 Yes No No 2
The Bank of Nova Scotia BNS (CA) 826390.0 66370.6 Yes Yes No 1
The Toronto-Dominion Bank TD (CA) 1076800.0 98467.2 Yes Yes No 1
UBS Group AG UBSG (CH) 972200.0 45246.3 Yes Yes No 1
Virtu Financial Inc VIRT (US) 9609.0 3105.7 No No Yes 5
Wedbush Inc 6661.6* No No No 1
Wells Fargo & Co WFC (US) 1936000.0 226773.6 Yes Yes No 1
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Table A2: US Equity ETF Summary Statistics

The table provides summary statistics for the sample of 438 US Equity ETFs. Size, age, expense ratio and benchmark
characteristics are reported as of December 31st, 2019. Trading volumes, basket sizes and convertion fees are reported based
on funds’ 2019 fiscal years. Panels A and B are for 2019, and Panel C is for daily 2020 data. p1 and p99 stand for the 1st and
99th percentile, respectively.

US Equity ETFs Mean Median St. Dev. p1 p99

Panel A
Size, $mln 5615.6 611.0 21365.4 13.1 87066.5
Age, years 10.8 12.1 5.6 1.9 21.1
Expense Ratio (net), bps 32.9 35.0 19.3 3.0 70.0
Benchmark index return, annual % 26.8 27.2 8.8 -3.2 50.3
Benchmark index st. dev., annual % 14.9 14.0 4.2 9.1 34.3
ETF share turnover, annual % 388.9 186.9 918.2 21.5 3015.4
Basket size, $mln 3.2 2.5 2.5 0.3 12.1
Basket size, 1000s of shares 46.0 50.0 13.8 10.0 100.0
Creation fee, bps 3.2 2.2 3.8 0.0 18.4
Redemption fee, bps 2.9 2.0 3.1 0.0 14.3
Total annual creation volume, % of size 101.8 50.9 164.1 0.0 785.5
Total annual redemption volume, % of size 69.2 42.0 119.9 4.1 402.6
Net annual creation volume, % of size 32.6 5.8 99.8 -62.8 407.7
Average spread, bps 10.4 6.2 18.6 0.7 51.4
In-kind redemption, dummy 0.41 0.00 0.49 0.00 1.00

Panel B
Average premium, daily bps 0.1 0.2 4.4 -11.6 12.4
Average absolute premium, daily bps 6.6 4.9 5.8 2.0 28.3
Premium st.dev., annualized, bps 136.3 99.2 125.5 40.0 752.9
Tracking error, annualized, bps 59.5 11.4 130.2 2.2 450.0
Total mispricing st.dev., annualized, bps 187.1 124.9 188.3 52.6 1061.3

Panel C
Premium, daily bps -0.6 -0.0 15.2 -58.3 49.6
Absolute premium, daily bps 9.2 5.2 13.9 0.0 80.5
Net fund flow, daily bps 1.8 0.0 93.7 -444.4 500.0
Spread, daily bps 14.6 9.2 18.4 0.5 102.4
Benchmark index return, daily % 0.1 0.2 2.6 -9.2 7.9
ETF share turnover, daily % 1.6 0.5 3.7 0.0 21.3
OFR Financial Stress Index -0.4 -1.6 3.4 -4.1 9.8
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Table A3: ETF Summary Statistics

The table provides summary statistics for the International Equity and Bond parts of the ETF universe. We only include funds
that are physically replicated and not leverage, inverse, or funds-of-funds. Size, age, expense ratio and benchmark characteristics
are reported as of December 31st, 2019. Trading volumes, basket sizes and convertion fees are reported based on funds’ 2019
fiscal year. p1 and p99 stand for the 1st and 99th percentile, respectively.

International Equity ETFs (278 funds) Mean Median St. Dev. p1 p99

Size, $mln 2806.55 226.85 9793.73 12.40 67137.70
Age, years 9.02 7.94 5.61 1.55 23.82
Expense Ratio, bps 44.45 48.00 21.87 3.00 92.00
Benchmark index return, 1y, % 19.63 20.37 9.21 -12.19 45.23
Benchmark index std. dev., 1y, % 12.53 11.43 4.55 6.30 27.26
Annual trading volume, % of size 465.88 202.77 814.88 45.53 3880.50
Basket size, $mln 3.78 2.24 4.59 0.44 30.43
Basket size, 1000s of shares 96.10 50.00 89.47 25.00 600.00
Creation fee, bps 14.15 8.58 15.38 0.00 75.96
Redemption fee, bps 13.59 8.46 15.63 0.00 76.90
Total annual creation volume, % of size 101.40 25.50 429.62 0.00 1304.08
Total annual redemption volume, % of size 48.12 26.02 158.56 0.00 328.23
Net annual creation volume, % of size 53.28 2.55 281.79 -58.08 1020.45
Average spread, bps 22.27 15.99 22.33 1.76 120.33
In-kind redemption, dummy 0.28 0.00 0.45 0.00 1.00

Bond ETFs (122 funds) Mean Median St. Dev. p1 p99

Size, $mln 5395.59 1046.50 9979.97 22.00 48455.80
Age, years 8.63 9.19 4.11 1.28 17.45
Expense Ratio, bps 18.80 15.00 12.99 3.50 56.00
Benchmark index return, 1y, % 10.07 8.91 5.07 2.12 23.89
Benchmark index std. dev., 1y, % 3.38 2.62 2.85 0.11 16.13
Annual trading volume, % of size 324.36 200.96 448.02 21.55 2424.38
Basket size, $mln 4.18 2.76 3.49 0.88 14.15
Basket size, 1000s of shares 74.59 50.00 40.78 25.00 200.00
Creation fee, bps 5.19 1.99 10.43 0.00 49.89
Redemption fee, bps 3.13 0.90 9.11 0.00 50.65
Total annual creation volume, % of size 81.49 50.55 109.12 1.99 350.05
Total annual redemption volume, % of size 40.15 22.38 56.61 0.00 289.20
Net annual creation volume, % of size 41.33 26.81 100.38 -56.05 316.18
Average spread, bps 9.64 5.69 14.78 0.91 44.38
In-kind redemption, dummy 0.20 0.00 0.41 0.00 1.00
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Table A4: ETF Network Features and ETF Liquidity

This table reports the results of estimating the following specification

Spread2019
f = β ×Network featuref + γ′Xf + αMS + εf

The regression is estimated on a cross-section of 438 US equity ETFs in 2019. The dependent variable is the average bid-ask
spread of ETF share in 2019. Fund characteristics include: logarithm of fund size (in $mln), logarithm of age (in days), logarithm
of creation basket size (in $), transaction fee (in bps), in-kind redemption dummy, net expense ratio (in bps), benchmark index
volatility of daily returns in 2019, and average daily turnover of ETF shares on exchange in 2019. Transaction fee is the
average of creation and redemption fees. The network features are defined in Section 4.2.3. All regressions include Morningstar
Investment Category fixed effects. t-statistics based on robust standard errors are in parentheses. Significance levels are marked
as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

Average ETF bid-ask spread in 2019, basis points

PM activity PM diversity Connectedness Share of direct
PM volume

Panel A: Without controls for fund characteristics
Network feature -13.061*** -24.697*** -9.041*** -7.868**

(-14.34) (-8.79) (-8.43) (-2.10)
Within R2, % 33.0 15.6 14.5 1.0

Panel B: With controls for fund characteristics
Network feature -5.854*** -6.471** -4.629*** -10.562***

(-3.56) (-2.21) (-3.81) (-3.44)
Within R2, % 39.9 38.7 40.1 39.8

Panel C: With controls for fund characteristics and mispricing in 2019
Network feature -0.296 1.680 -2.739*** -3.270

(-0.21) (0.68) (-2.71) (-1.26)
Within R2, % 58.7 58.7 59.4 58.8
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Table A5: ETF Network Features and Mispricing: Benchmark Index Fixed Effects

This table reports the results of cross-section and daily panel regressions on a subsample of 46 US Equity ETFs with non-
unique benchmarks. Panels A and B present results for cross-sectional regressions of the end-of-day fund mispricing on network
characteristics in 2019:

Mispricingf,2019 = β ×Network featuref,2019 + γ′Xf,2019 + αBM + εf

Panel A does not include fund-level controls. Panel B includes primary market fees, logarithm of creation basket size and
average bid-ask spread on the ETF share.

Panels C and D present results for daily panel regressions of the end-of-day fund mispricing in 2020 on network character-
istics as of 2019:

Mispricingf,t = β ×Network featuref + γ′Xf,t + αBM + αt + εf,t

Panel C does not include fund-level controls. Panel D includes primary market fees, logarithm of creation basket size and
bid-ask spread on the ETF share.

All regressions include Benchmark Index fixed effects. Panels C and D include date fixed effects. t-statistics based on
standard errors clustered by fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

PM activity PM diversity Connectedness Share of direct
PM volume

Panel A: Cross-section 2019, without controls
Network feature -2.274*** -6.006*** -2.330*** -1.006

(-7.87) (-4.32) (-6.89) (-0.54)
Observations 46 46 46 46
Within R2, % 86.5 74.0 84.0 57.2

Panel B: Cross-section 2019, with controls
Network feature -1.452*** -2.834** -1.492** -2.963**

(-2.80) (-2.11) (-2.59) (-2.38)
Observations 46 46 46 46
Within R2, % 88.6 87.2 88.2 87.7

Panel C: Panel 2020, without controls
Network feature -3.775*** -8.638*** -4.728*** -5.971***

(-3.95) (-3.33) (-7.34) (-3.13)
Observations 11,636 11,636 11,636 11,636
Within R2, % 2.7 1.2 3.7 0.5

Panel D: Panel 2020, with controls
Network feature -1.809*** -3.610** -2.931*** -6.125***

(-2.78) (-2.31) (-3.73) (-4.34)
Observations 11,636 11,636 11,636 11,636
Within R2, % 5.3 5.1 5.6 5.5
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Table A6: ETF Characteristics and ETF-AP Connections in 2020

This table reports the results of estimating the following specification:

Yij = γ′Pair Charsij + δ′FundCharsi + εij

The regression is estimated on a cross-section of ETF-AP pairs of 432 US equity ETFs in 2020. Columns (1), (2), (5), (6), (9)
and (10) report panel regression estimates while columns (3), (4), (7) and (8) report probit estimates.

We use the following variables as a dependent variable Yij : a dummy that equals 1 if AP j has a registered connection
with ETF i in 2020 (columns (1)-(4)), a dummy that equals 1 if AP j created or redeeemed shares of ETF i in 2020 (columns
(5)-(8)), and log(1 +PM volumeij) where PM volumeij is the total primary market volume traded by AP j in ETF i in 2020.
Correspondingly, the sample is limited to connections not existing in 2019 in columns (1)-(4) and to connections existing in
2019 in columns (5)-(10).

Pair Charsij include pair characteristics: a dummy that equals 1 if AP j created or redeeemed shares of ETF i in 2019,
a dummy that equals 1 if AP j was active in any ETF of the family of ETF i in 2019, a dummy that equals 1 if AP j was
registered in any ETF of the family of ETF i in 2019.

FundCharsi include our baseline fund characteristics: logarithm of fund size (in $mln), logarithm of age (in days),
logarithm of creation basket size (in $), transaction fee, net expense ratio, dummy for whether ETF shares can be redeemed
through an in-kind transaction only, benchmark index volatility of daily returns in 2019, average daily turnover of ETF shares
on exchange in 2019, - as well as average fund mispricing and bid-ask spread in 2019. Transaction fee is the average of creation
and redemption fees.

Columns (1), (2), (5), (6), (9) and (10) include AP and Morningstar Investment Category fixed effects and t-statistics based
on standard errors double clustered by fund and AP. Columns (3), (4), (7) and (8) do not include fixed effects and t-statistics
are based on robust standard errors. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF-AP pair characteristic in 2020:
AP is registered AP is active AP’s PM volume

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AP active in family dummy -0.078 -0.072 -0.213** -0.129 0.054*** 0.028* 0.908*** 0.964*** 1.006*** 0.355
(-0.77) (-0.72) (-2.20) (-1.31) (3.73) (1.91) (17.22) (18.16) (3.67) (1.29)

AP registered in family 0.209** 0.189** 1.011*** 0.934***
(2.48) (2.28) (18.89) (16.25)

Active pair dummy 0.425*** 0.354*** 1.812*** 1.737*** 8.333*** 6.641***
(9.29) (8.52) (56.84) (52.95) (9.32) (8.65)

ETF mispricing -16.091 -67.372 -20.609 -63.109 -187.542
(-1.39) (-0.79) (-1.36) (-0.84) (-0.69)

Ln(Size) -0.010 -0.086*** 0.024*** 0.073*** 0.625***
(-1.50) (-4.38) (4.76) (5.73) (5.52)

Ln(Age) 0.042** 0.313*** 0.004 -0.169*** 0.146
(2.03) (5.73) (0.39) (-4.74) (0.77)

Ln(Basket Size) 0.005 -0.040 -0.008 -0.018 -0.044
(0.56) (-0.85) (-0.95) (-0.60) (-0.29)

Transaction Fee 8.160 53.799 -16.681 -114.459** -242.589
(0.78) (0.62) (-1.13) (-2.04) (-0.86)

Net Expense Ratio -8.730* -71.119*** -8.015** -12.456 -169.576***
(-1.69) (-4.43) (-2.29) (-1.13) (-2.81)

Turnover 0.111 1.421*** 0.566*** 1.524*** 13.019***
(0.63) (2.96) (3.95) (5.73) (4.39)

In-Kind ETF dummy -0.027 -0.247*** 0.007 0.042 0.137
(-1.28) (-4.65) (0.82) (1.29) (0.81)

Benchmark index st. dev. -0.067 -0.811 0.094 0.489 0.557
(-0.57) (-1.14) (0.73) (1.13) (0.23)

Average spread 0.033 -0.208 0.043 0.143 1.390
(0.96) (-0.44) (0.69) (0.37) (1.21)

Observations 8,811 8,811 8,812 8,812 12,355 12,355 12,356 12,356 12,355 12,355
Within R2, % 8.8 10.7 21.5 26.0 23.9 31.1
Pseudo R2, % 9.4 12.0 39.7 40.8

Sample Not registered in 2019 Registered in 2019
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Table A7: ETF Network Features and Mispricing in 2020: Mispricing Measured Using Bid-Ask
Midpoints

This table reports the results of daily panel regressions of the end-of-day fund mispricing on network characteristics. Panel A
reports the estimates for the following specification:

Mispricingf,t = β ×Network featuref + γ′Xf,t + δ′Yf + αMS + αt + εf,t

Panel B reports the estimates for

Mispricingf,t = β1 ×Network featuref ×DLow F SI
t + β2 ×Network featuref ×DHigh F SI

t +

+ γ′1Xf,t ×DLow F SI
t + γ′2Xf,t ×DHigh F SI

t + δ′1Yf ×DLow F SI
t + δ′2Yf ×DHigh F SI

t + αMS + αt + εf,t

The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is ETF mispricing, absolute
value of the relative premium of ETF share price over its net asset value per share, estimated using bid-ask spread mid points.
All network features are as of 2019. Daily DHigh F SI equals 1 when the daily Financial Stress Index is above 0 (stress above
average, as per OFR definition). DLow F SI = 1 when the daily Financial Stress Index is negative. Last row of the table reports
results of a t-test that β2−β1 = 0. Daily controls include bid-ask spread on the ETF share and its square, daily benchmark index
return and its square, and daily turnover of ETF shares on the exchange. Other controls are fund characteristics: logarithms
of fund size and age (as of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket size, PM
transaction fee and net expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of creation and
redemption fees. The network features are defined in Section 4.2.3, these features are demeaned before we build the interaction
variable. All regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors
clustered by fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

PM activity PM diversity Connectedness Share of direct
PM volume

Panel A: Network feature as of 2019
Network feature -0.474 -0.177 -1.031** -2.716**

(-0.92) (-0.17) (-2.48) (-2.04)
Observations 109,134 109,134 109,134 109,134
Within R2, % 19.8 19.8 20.0 20.0

Panel B: Interactions with FSI
Network feature ×DLowFSI 0.120 0.800 -0.744* -1.639

(0.24) (0.86) (-1.93) (-1.31)
Network feature ×DHighFSI -1.754** -2.113 -1.625*** -4.569***

(-2.53) (-1.34) (-2.78) (-2.74)
Transaction fee ×DLowFSI 0.023 0.024 0.035 0.029

(0.51) (0.55) (0.81) (0.65)
Transaction fee ×DHighFSI 0.208** 0.218** 0.277*** 0.242***

(2.37) (2.45) (3.40) (2.65)
Observations 109,134 109,134 109,134 109,134
Within R2, % 21.0 21.0 21.2 21.2

Network feature High-Low -1.873** -2.913** -0.881** -2.930***
(-3.75) (-2.57) (-2.06) (-3.08)
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Table A8: ETF Network Features and Mispricing in 2020: Size Subsamples

This table reports the results of daily panel regressions of the end-of-day fund mispricing on network characteristics. Panels
report the estimates for the following specification:

Mispricingf,t = β1 ×Network featuref ×DLow F SI
t + β2 ×Network featuref ×DHigh F SI

t +

+ γ′1Xf,t ×DLow F SI
t + γ′2Xf,t ×DHigh F SI

t + δ′1Yf ×DLow F SI
t + δ′2Yf ×DHigh F SI

t + αMS + αt + εf,t

Panel A reports results for small funds, i.e., funds smaller than the median fund as of the end of 2019. Panel B reports
results for large funds.

The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is ETF mispricing,
absolute value of the relative premium of ETF share price over its net asset value per share, estimated with close prices. All
network features are as of 2019. Daily DHigh F SI equals 1 when the daily Financial Stress Index is above 0 (stress above average,
as per OFR definition). DLow F SI = 1 when the daily Financial Stress Index is negative. Last row of each panel reports results
of a t-test that β2 − β1 = 0. Daily controls include bid-ask spread on the ETF share and its square, daily benchmark index
return and its square, and daily turnover of ETF shares on the exchange. Other controls are fund characteristics: logarithms
of fund size and age (as of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket size, PM
transaction fee and net expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of creation and
redemption fees. The network features are defined in Section 4.2.3, these features are demeaned before we build the interaction
variable. All regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors
clustered by fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

PM activity PM diversity Connectedness Share of direct
PM volume

Panel A: Small Funds
Network feature ×DLowFSI -1.581* -1.892 -0.420 -0.834

(-1.89) (-1.34) (-0.60) (-0.45)
Network feature ×DHighFSI -5.040*** -5.698* -2.161** -2.546

(-2.93) (-1.94) (-2.01) (-0.84)
Transaction fee ×DLowFSI 0.112* 0.107 0.133** 0.123*

(1.67) (1.57) (1.97) (1.88)
Transaction fee ×DHighFSI 0.303*** 0.332*** 0.459*** 0.384***

(2.74) (2.79) (3.69) (3.12)
Observations 54,510 54,510 54,510 54,510
Within R2, % 12.9 12.8 12.7 12.6

Network feature High-Low -3.459*** -3.806* -1.740** -1.712
(-2.78) (-1.69) (-2.29) (-0.89)

Panel B: Large Funds

Network feature ×DLowFSI -0.806** -0.910 -0.340 -0.056
(-2.46) (-1.17) (-1.09) (-0.08)

Network feature ×DHighFSI -2.059** -4.331** -0.771 -4.168***
(-2.57) (-2.13) (-0.96) (-3.19)

Transaction fee ×DLowFSI 0.005 0.013 0.015 0.021
(0.13) (0.30) (0.38) (0.50)

Transaction fee ×DHighFSI 0.393*** 0.398*** 0.440*** 0.413***
(4.68) (4.75) (5.59) (4.85)

Observations 54,624 54,624 54,624 54,624
Within R2, % 9.8 9.7 9.6 9.7

Network feature High-Low -1.253* -3.422** -0.431 -4.111***
(-1.83) (-2.16) (-0.67) (-3.63)
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Table A9: ETF Network Features and Mispricing in 2020, Additional Controls

This table reports the estimates for specification

Mispricingf,t = β1 × PM activityf ×DLow F SI
t + β2 × PM activityf ×DHigh F SI

t +

+ γ′1Xf,t ×DLow F SI
t + γ′2Xf,t ×DHigh F SI

t + δ′1Yf ×DLow F SI
t + δ′2Yf ×DHigh F SI

t + αMS + αt + εf,t

The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is ETF mispricing, absolute
value of the relative premium of ETF share price over its net asset value per share, estimated with close prices. PM activity
is as of 2019. Daily DHigh F SI equals 1 when the daily Financial Stress Index is above 0 (stress above average, as per OFR
definition). DLow F SI = 1 when the daily Financial Stress Index is negative. Last row of the table reports results of a t-test
that β2 − β1 = 0. In columns (1)-(8), we include control variables in addition to the baseline controls desctibed in Table 4. All
regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors clustered by
fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

(1) (2) (3) (4) (5) (6) (7) (8)

PM activity ×DLowFSI -0.740 -1.131* -0.916 -0.927 -1.202** -0.710 -0.931 -0.885
(-1.25) (-1.75) (-1.56) (-1.58) (-2.23) (-1.15) (-1.60) (-1.49)

PM activity ×DHighFSI -3.310*** -3.594*** -3.522*** -3.327*** -3.533*** -3.183*** -3.478*** -3.419***
(-3.24) (-3.00) (-3.29) (-3.11) (-3.24) (-3.05) (-3.24) (-3.14)

IOR ×DLowFSI -1.791**
(-2.54)

IOR ×DHighFSI -1.819*
(-1.91)

Short interest ratio ×DLowFSI 0.062***
(2.84)

Short interest ratio ×DHighFSI 0.067
(1.60)

Tracking error ×DLowFSI -0.896
(-0.12)

Tracking error ×DHighFSI -14.853
(-1.49)

Holdings ILLIQ ×DLowFSI 56.846**
(2.14)

Holdings ILLIQ ×DHighFSI 424.208***
(3.45)

ETF ILLIQ ×DLowFSI 0.433***
(2.66)

ETF ILLIQ ×DHighFSI -0.015
(-0.09)

Ln(Family size) ×DLowFSI -0.190
(-1.44)

Ln(Family size) ×DHighFSI -0.288*
(-1.82)

Option traded dummy ×DLowFSI 0.100
(0.36)

Option traded dummy ×DHighFSI -0.126
(-0.27)

PM turnover ×DLowFSI -0.029
(-1.37)

PM turnover ×DHighFSI -0.047
(-1.46)

Observations 109,134 100,279 109,134 108,723 106,605 109,134 109,134 109,134
Within R2, % 17.1 17.3 16.9 17.3 17.4 17.0 16.9 16.9

PM activity High-Low -2.570*** -2.463*** -2.605*** -2.401*** -2.331*** -2.472*** -2.546*** -2.534***
(-3.28) (-2.76) (-3.33) (-3.13) (-2.95) (-3.06) (-3.25) (-3.15)

61



A.5 Details on ADV Data

We use ADV forms from the SEC website submitted in 2020 in order to characterize
the prime brokerage business of APs in 2019.83 Specifically, we take the last report for each
company in 2020. We keep filings from investment companies that advise at least one hedge
fund according to the classification in Schedule D Part 7B1 of the ADV forms and have more
than 80% of AUM from hedge fund clients (as in Jiang (2021)). For each prime broker, we
compute the number of clients and the gross asset value. A ‘client’ in our sample is therefore
an investment advisor (defined by a unique SEC number in ADV forms).

We aggregate prime brokers into holding companies, consistent with how we process
N-CEN filings. We end up with 160 unique prime brokers and 2,447 clients in 2019 (for
comparison, Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel (2020) follow the same
algorithm and report 2,250 advisors and 152 prime brokers in 2018). A median prime broker
in our sample has two clients with $3.5 billion in gross assets, though the distribution is
highly skewed. 44% of clients have only one broker and 90% have up to four prime brokers.
Clients with larger asset bases tend to have more prime brokers.

83ADV forms are submitted annually by investment advisors with more than 15 U.S. clients or more that
$25 million in assets under management. Data are available here: https://www.sec.gov/foia/docs/
form-adv-archive-data.htm.
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A.6 Details on the Federal Reserve’s Bond-Buying Program

During the first weeks of the COVID-19 crisis in March of 2020, the US corporate
bond market plummeted. This drop forced the Federal Reserve to design several stabilizing
programs. In particular, on March 23, the Federal Reserve established the Secondary Market
Corporate Credit Facility84 (SMCCF) to provide liquidity to the secondary market through
the purchases of individual bonds and bond ETFs. The program was scheduled to start on
May 12, 2020, and was to last through the end of 2020. According to the announcement on
April 9, $25 billion would be allocated to the SMCCF. Taking into account the potential
leverage of 10 to one, the size of SMCCF alone could have reached up to $250 billion.85

The SMCCF could only buy bonds and ETFs from so-called ‘Eligible Sellers’. Eligi-
ble Sellers were institutions that operated primarily in the United States and that satisfied
certain certification requirements.86 At the beginning of the program, the SMCCF mostly
traded with primary dealers, but later started considering other eligible counterparties. Ap-
pendix Table A10 presents the list of authorized participants from our sample that were
actively engaged in the SMCCF’s purchases of bond ETFs. Out of 50 APs operating in the
ETF industry during 2019-2020, 17 actively sold bond ETFs to the Federal Reserve. The
aggregate ETF and bond purchases through all eligible sellers are reported in Table A11.
We only include APs that traded with the Federal Reserve in the first five weeks of the
program (from May 12 to June 15), when the SMCCF was only buying ETFs. Between
June 16 and July 27, the SMCCF bought both ETFs and individual bonds. After July 28,
it only purchased bonds. In our analysis, we focus on the first five weeks of the program
because that is when most of the ETF purchases took place and because the amount of bond
purchases is small enough that we can measure the amount purchased through each AP.87

84https://www.federalreserve.gov/monetarypolicy/smccf.htm
85The Federal Reserve explicitly stated, however, that SMCCF purchases would be adjusted based
on ‘sustained improvement in market functioning:’ https://www.newyorkfed.org/markets/
secondary-market-corporate-credit-facility/secondary-market-corporate-credit-facility
-seller-certification.

86For details, see: https://www.newyorkfed.org/markets/secondary-market-corporate-credit
-facility/secondary-market-corporate-credit-facility-seller-certification.

87The volume of an eligible seller reported by the Federal Reserve is the total of bond and bond ETF
purchases. To be able to compare with the trading volume of APs in 2019, we need to focus on ETF
transactions. Therefore, we pick the first five weeks of the program, when bond purchases were smaller
than ETF purchases. If we take the first week only, when no bonds were purchased, we miss a considerable
share of ETF purchases. If we include all purchases up to July 30, we might mismeasure the balance sheet
space allocated to ETFs (assuming the more likely substitution from bond ETFs to equity ETFs instead of
substitution between bond ETFs and bonds). Our subsampling choices are also limited by the aggregation
in the Fed’s reporting: Amounts by AP are reported for periods May 12 to May 18, May 19 to June 17,
June 18 to June 29, and June 30 to July 30.
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Table A10: APs as Sellers in the SMCCF

The table provides the summary statistics for the APs’ participation in the Fed’s bond ETF purchases within the SMCCF
between May 12 and June 17, 2020. Amount refers to the nominal value of bond ETFs that were purchased by the Fed via the
AP. The exposure to the program is computed as: AP Exposurei = F ED ET F P urchasesi

T otal Bond ET F V olume 2019i
. Four APs are not assigned

an exposure because they did not have any bond ETF activity in 2019.a Lead is equal to 1 if AP ever appears as the most
active AP of a US equity ETF in our sample.

AP holding company Amount, $mln N of trades AP Exposure Lead

Bank of America 937.53 109 0.04 1
Barclays PLC 776.18 80 0.63 1
Bank of Montreal 330.31 19 - 0
BNP Paribas 452.80 60 9.38 1
Citigroup Inc 532.47 41 0.60 1
Daiwa Securities Group Inc 2.70 1 - 0
Deutsche Bank AG 3.70 2 0.00 1
Goldman Sachs Group Inc 585.31 38 0.06 1
Jefferies Financial Group 567.96 57 1.00 0
JPMorgan Chase & Co 297.93 30 0.02 1
Mizuho Financial Group 207.75 23 15.09 1
Morgan Stanley 1010.38 110 0.94 1
Royal Bank of Canada 594.16 24 0.23 1
The Bank of Nova Scotia 519.76 48 - 0
The Toronto-Dominion Bank 4.38 1 - 0
UBS Group AG 122.45 8 3.75 1
Wells Fargo & Co 281.91 34 40.13 1

aOur results are not sensitive to that because we only consider lead AP exposures.
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Table A11: Traded Amounts by Eligible Seller in the SMCCF

The table provides the summary statistics for the seller participation in the Fed’s bond ETF and bond purchases within the
SMCCF between May 12 and July 30, 2020.a Amount by period refers to the nominal value of bond ETFs or bonds that
were purchased by the Fed via the seller. Traded amounts by seller come from the Federal Reserve’s website.b Only APs with
positive amount between May 12 and June 17 are included in our sample in Table A10.

Eligible seller AP Amount by period, $mln
May 12 - May 18 May 19 - June 17 June 18 - June 29 June 30 - July 30

Amherst Pierpont Securities N 73.03 289.24 255.25
Bank of America Y 337.40 600.13 136.70 150.02
Barclays PLC Y 208.05 568.12 148.37 181.96
Bank of Montreal Y 56.38 273.93 98.54 27.50
BNP Paribas Y 41.21 411.59 123.49 91.05
Cantor Fitzgerald Y 8.73
Citigroup Inc Y 86.36 446.12 152.57 132.23
Daiwa Securities Group Inc Y 2.70 7.27 15.66
Deutsche Bank AG Y 3.70 22.57 28.16
Goldman Sachs Group Inc Y 201.80 383.52 83.31 230.20
HSBC Holdings Plc Y 10.22 3.16
Jefferies Financial Group Y 124.73 443.22 133.12 56.49
JPMorgan Chase & Co Y 297.93 132.81 147.83
Mizuho Financial Group Y 207.75 172.64 80.43
Morgan Stanley Y 327.16 683.22 323.90 346.71
NatWest Group PLC Y 2.71 15.96
Royal Bank of Canada Y 594.16 83.19 130.19
Societe Generale Y 12.20
The Bank of Nova Scotia Y 4.38 42.79 58.37
The Toronto-Dominion Bank Y 3.19 12.80 51.83
UBS Group AG Y 119.75 203.29 117.86 16.98
Wells Fargo & Co Y 78.61 519.76 211.61 254.47

Total Fed purchases, $ mln 1,581.46 5,722.45 2,369.16 2,371.35
ETF share in purchases, % 100.0 92.5 43.9 22.0

aThere were no ETF purchases after July 30, 2020.
bhttps://www.federalreserve.gov/monetarypolicy/smccf.htm
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Table A12: ETF-Level AP Exposure Statistics

The table provides summary statistics for the AP exposure to the SMCCF at the ETF level. AP j’s exposure to the program,
that is, the amount of bond ETF purchases through this AP relative to the total bond ETF primary market volume of this AP
in 2019 is computed as:

AP Exposurej =
FEDETF PurchasesAPj

Total BondETF V olume 2019j

LeadAP Exposure is AP Exposurej for the lead AP of the fund. p1 and p99 stand for the 1st and 99th percentile, respectively.

Mean Median St. Dev. p1 p99

Lead AP exposure 0.10 0.03 0.29 0.00 0.93

Table A13: Fed SMCCF Purchases and Bond ETF Flows

The table reports the estimate of β for the following specification:

Flowf,t = β × SMCCF flowf + γ′Xf,t + αf + αt + εf,t

The regression is estimated on a daily panel of 124 US bond ETFs in 2020. The dependent variable is daily ETF fund flow,

percentage change in the number of fund shares. The main independent variable is SMCCF flow, the number of shares

purchased by the SMCCF divided by the number of shares the day before. Column (3) reports intensive margin results only,

i.e., on a subsample of 16 ETFs whose shares the SMCCF purchased. We report these purchases by fund in Appendix Table

A14. In column (4), we interact SMCCF flow with time dummies: DET F only = 1 in May 12 to May 18, DMostly ET F s = 1 in

May 19 to June 17 and DMostly bonds = 1 in June 18 to July 30. Daily controls Xf,t include bid-ask spread on the ETF share

and its square, daily benchmark index return and its square, and daily turnover of ETF shares on the exchange. t-statistics

based on standard errors clustered by fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF daily flow
(1) (2) (3) (4)

SMCCFflow 2.316*** 2.123*** 2.089**
(4.89) (4.52) (2.47)

SMCCFflow ×DETF only 1.577***
(4.21)

SMCCFflow ×DMostly ETFs 2.668***
(4.86)

SMCCFflow ×DMostly bonds -1.770
(-0.77)

Observations 31,213 31,213 3,526 31,213
Adjusted R2 3.2 4.2 15.1 4.3
Sample All bond ETFs All bond ETFs SMCCF only All bond ETFs
FE Fund and Date Fund and Date Fund and Date Fund and Date
Clusters Fund Fund Fund Fund
Daily controls No Yes Yes Yes
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Table A14: Traded Amounts by ETF in the SMCCF

The table provides the summary statistics for the Fed’s bond ETF and bond purchases through the SMCCF. Total flow refers to
a simple sum of percentage flows over different dates (shares purchased divided by shares outstanding the day before). Traded
amounts by ETF come from the Federal Reserve’s website.a

ETF name Ticker Amount purchased, $mln Total
flow, %

Total Purchased in May
12 - June 17

VanEck Vectors Fallen Angel High Yield Bond ANGL 31.4 27.9 1.62
iShares iBoxx High Yield Corporate Bond HYG 314.5 240.4 1.30
Xtrackers US Dollar High Yield Corporate Bond HYLB 76.8 56.2 1.61
iShares Intermediate-Term Corporate Bond IGIB 477.6 390.7 5.22
iShares Short-Term Corporate Bond IGSB 675.1 606.0 4.01
SPDR Bloomberg Barclays High Yield Bond JNK 533.6 411.9 4.69
iShares iBoxx US Dollar Investment Grade Corporate Bond LQD 2,349.0 1854.0 4.68
iShares 0-5 Year High Yield Corporate Bond SHYG 29.1 23.3 0.71
SPDR Bloomberg Barclays Short Term High Yield Bond SJNK 31.1 22.6 0.89
iShares 0-5 Year Investment Grade Corporate Bond SLQD 43.5 43.5 2.12
SPDR Portfolio Intermediate Term Corporate Bond SPIB 473.4 413.5 7.88
SPDR Portfolio Short Term Corporate Bond SPSB 279.2 244.8 4.33
iShares Broad US Dollar High Yield Corporate Bond USHY 59.2 48.4 1.17
iShares Broad US Dollar Investment Grade Corporate Bond USIG 177.2 148.5 3.90
Vanguard Intermediate-Term Corporate Bond VCIT 1,390.2 1011.5 4.46
Vanguard Short-Term Corporate Bond VCSH 1,494.1 1331.8 5.62

Total 8,434.8 6,875.0

ahttps://www.federalreserve.gov/monetarypolicy/smccf.htm.
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Table A15: AP Activity and Arbitrage Opportunities

This table reports the results of daily panel regressions of the end-of-day fund mispricing and primary market inflows on different
measures of outside arbitrage opportunities available for fund’s APs.

Panel A reports the estimate of β for the following specification:

Mispricingf,t = βOutside opportunityf,t + γ′Xf,t + δ′Yf + αMS + αt + εf,t

The dependent variable is ETF mispricing, absolute value of the relative premium of ETF share price over its net asset value
per share, estimated with close prices.

Panel B reports the estimates of β1, β2 and β3 for

Flowf,t = β1Premf,t−1+β2Outside opportunityf,t+β3Premf,t−1×Outside opportunityf,t+γ′Xf,t−1+δ′Yf +αMS +αt+εf,t

The dependent variable is daily net flow (percentage change in fund shares outstanding).
The size of arbitrage opportunity of AP j in fund f is defined as

Outside opportunityf,j,t =
FeeAdj Mispricingf,t−1

ILLIQET F
f,2019 + ILLIQBM

f,2019

where FeeAdj Mispricingf,t−1 is a daily fund mispricing minus the primary market transaction fee, ILLIQET F
f,2019 and

ILLIQBM
f,2019 are Amihud illiquidity measures of the ETF and the underlying portfolio measured on daily data for 2019.

To compute all arbitrage opportunities for AP j, we sum arbitrage opportunities across all funds in which this AP was
active in 2020:

Outside opportunityj,t =
∑

f∈active

Outside opportunityf,j,t

To aggregate arbitrage opportunities available to all APs to the fund level, we weigh them by APs’ primary market volumes in
2020.

The regressions are estimated on a daily panel of 432 US equity ETFs in 2020. Daily controls include bid-ask spread on
the ETF share and its square, daily benchmark index return and its square, and daily turnover of ETF shares on the exchange.
Other controls are fund characteristics: logarithms of fund size and age (as of 2019), benchmark index volatility of daily returns
in 2019, logarithm of creation basket size, PM transaction fee and net expense ratio (in bps), and in-kind redemption dummy.
Transaction fee is the average of creation and redemption fees. All regressions include Morningstar Investment Category, date
and lead AP fixed effects. t-statistics based on standard errors clustered by fund are in parentheses. Significance levels are
marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points
All

opportunities,
all APs

Best
opportunity, all

APs

All
opportunities,

lead AP

Best
opportunity,
lead AP

Panel A: Daily mispricing
Outside opportunity -0.837* -0.768 -0.301 -0.271

(-1.81) (-0.56) (-0.93) (-0.29)
Observations 108,649 108,649 108,649 108,649
Within R2, % 14.7 14.7 14.7 14.7

Panel B: Daily inflow
Premium 0.498*** 0.501*** 0.496*** 0.500***

(5.63) (5.68) (5.63) (5.68)
Outside opportunity -8.389** 0.768 -7.394** 0.239

(-1.97) (0.24) (-2.38) (0.08)
Premium × Outside opportunity -0.027 -0.031 -0.034 -0.074

(-0.39) (-0.28) (-0.62) (-0.72)
Observations 108,037 108,037 108,037 108,037
Within R2, % 0.3 0.3 0.3 0.3
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Table A16: ETF Flow-Premium Sensitivity and Institutional Ownership Changes

This table reports the results of daily panel regressions of the primary market flows on lagged end-of-day fund mispricing. We
estimate the following specification:

Flowf,t = β × Premiumf,t−1 + φ× Premiumf,t−1 ×∆IORf,q + κ×∆IORf,q + γ′Xf,t−1 + δ′Yf + αMS + αt + εf,t

The regression is estimated on a daily panel of 434 US equity ETFs in 2019 and Q1 2020. The dependent variable is
daily net flow (percentage change in fund shares outstanding). The main independent variable is lagged ETF premium, i.e.,
the relative premium of ETF share price over its net asset value per share (in percent). ∆IORf,q is quarterly change in
13F institutional ownership ratio, and ∆IORT RA

f,q and ∆IORQIX
f,q

are changes in its transient and quasi-indexer components,
respectively. Daily (lagged) controls include bid-ask spread on the ETF share and its square, daily benchmark index return and
its square, and daily turnover of ETF shares on the exchange. Other controls are fund characteristics: logarithms of fund size
and age (as of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket size, PM transaction fee
and net expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of creation and redemption fees.
All regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors clustered
by fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF daily flows, percent

(1) (2) (3) (4)

ETF premium 0.502*** 0.431*** 0.443*** 0.429***
(12.71) (9.52) (9.45) (9.50)

ETF premium ×∆IOR -0.245
(-0.66)

∆IOR 33.403***
(4.65)

ETF premium ×∆IORTRA -1.392
(-1.48)

∆IORTRA 19.975*
(1.87)

ETF premium ×∆IORQIX -0.441
(-0.65)

∆IORQIX 39.772***
(3.68)

Observations 215,845 134,228 134,228 134,228
Within R2, % 0.6 0.6 0.5 0.6
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Table A17: ETF Network Features and Mispricing in 2020: Benchmark Volatility Subsamples

This table reports the results of daily panel regressions of the end-of-day fund mispricing on network characteristics. Panels
report the estimates for the following specification:

Mispricingf,t = β1 ×Network featuref ×DLow F SI
t + β2 ×Network featuref ×DHigh F SI

t +

+ γ′1Xf,t ×DLow F SI
t + γ′2Xf,t ×DHigh F SI

t + δ′1Yf ×DLow F SI
t + δ′2Yf ×DHigh F SI

t + αMS + αt + εf,t

Panel A reports results for funds with benchmark volatility lower than the one of the median fund, as of the end of 2019.
Panel B reports results for funds with higher benchmark volatility.

The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is ETF mispricing,
absolute value of the relative premium of ETF share price over its net asset value per share, estimated with close prices. All
network features are as of 2019. Daily DHigh F SI equals 1 when the daily Financial Stress Index is above 0 (stress above average,
as per OFR definition). DLow F SI = 1 when the daily Financial Stress Index is negative. Last row of each panel reports results
of a t-test that β2 − β1 = 0. Daily controls include bid-ask spread on the ETF share and its square, daily benchmark index
return and its square, and daily turnover of ETF shares on the exchange. Other controls are fund characteristics: logarithms
of fund size and age (as of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket size, PM
transaction fee and net expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of creation and
redemption fees. The network features are defined in Section 4.2.3, these features are demeaned before we build the interaction
variable. All regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors
clustered by fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

PM activity PM diversity Connectedness Share of direct
PM volume

Panel A: Low BM Volatility Funds
Network feature ×DLowFSI 1.143 0.588 -0.650 -0.880

(1.53) (0.40) (-0.92) (-0.48)
Network feature ×DHighFSI -0.388 -3.286 -0.167 -3.304

(-0.33) (-1.21) (-0.19) (-1.39)
Transaction fee ×DLowFSI 0.058 0.048 0.063 0.050

(0.89) (0.78) (0.95) (0.81)
Transaction fee ×DHighFSI 0.391*** 0.386*** 0.412*** 0.406***

(3.33) (3.25) (3.66) (3.49)

Observations 54,520 54,520 54,520 54,520
Within R2, % 19.1 19.1 19.1 19.1

Network feature High-Low -1.531 -3.874* -0.482 -2.424*
(-1.58) (-1.77) (-0.60) (-1.85)

Panel B: High BM Volatility Funds

Network feature ×DLowFSI -2.594*** -3.837** -1.156** -1.011
(-3.59) (-2.15) (-2.11) (-0.55)

Network feature ×DHighFSI -6.799*** -8.006** -2.762*** -4.990
(-4.43) (-2.41) (-3.16) (-1.54)

Transaction fee ×DLowFSI 0.059 0.039 0.075 0.072
(1.06) (0.62) (1.25) (1.24)

Transaction fee ×DHighFSI 0.208* 0.222* 0.343*** 0.294**
(1.82) (1.80) (2.89) (2.16)

Observations 54,614 54,614 54,614 54,614
Within R2, % 14.5 14.0 13.9 13.7

Network feature High-Low -4.205*** -4.170* -1.606** -3.979*
(-3.74) (-1.79) (-2.38) (-1.79)
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Table A18: ETF Network Features and Mispricing in 2020: Benchmark Weighting Subsamples

This table reports the results of daily panel regressions of the end-of-day fund mispricing on network characteristics. Panels
report the estimates for the following specification:

Mispricingf,t = β1 ×Network featuref ×DLow F SI
t + β2 ×Network featuref ×DHigh F SI

t +

+ γ′1Xf,t ×DLow F SI
t + γ′2Xf,t ×DHigh F SI

t + δ′1Yf ×DLow F SI
t + δ′2Yf ×DHigh F SI

t + αMS + αt + εf,t

Panel A reports results for funds with ‘simple’ benchmark weighting methodology, i.e., equal, market value or modified
market value weighted benchmarks. Panel B reports results for all other funds.

The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is ETF mispricing,
absolute value of the relative premium of ETF share price over its net asset value per share, estimated with close prices. All
network features are as of 2019. Daily DHigh F SI equals 1 when the daily Financial Stress Index is above 0 (stress above average,
as per OFR definition). DLow F SI = 1 when the daily Financial Stress Index is negative. Last row of each panel reports results
of a t-test that β2 − β1 = 0. Daily controls include bid-ask spread on the ETF share and its square, daily benchmark index
return and its square, and daily turnover of ETF shares on the exchange. Other controls are fund characteristics: logarithms
of fund size and age (as of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket size, PM
transaction fee and net expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of creation and
redemption fees. The network features are defined in Section 4.2.3, these features are demeaned before we build the interaction
variable. All regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors
clustered by fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

PM activity PM diversity Connectedness Share of direct
PM volume

Panel A: ‘Simple’ benchmark weighting
Network feature ×DLowFSI -1.037 -3.591* -1.753** -2.192

(-1.45) (-1.76) (-2.38) (-1.20)
Network feature ×DHighFSI -2.577** -5.717* -2.391*** -7.043***

(-2.20) (-1.66) (-2.61) (-2.68)
Observations 63,136 63,136 63,136 63,136
Within R2, % 20.9 20.9 21.1 21.0

Network feature High-Low -1.540 -2.126 -0.638 -4.851***
(-1.53) (-0.85) (-0.77) (-2.75)

Panel B: ‘Complex’ benchmark weighting

Network feature ×DLowFSI -0.962 -1.169 0.306 0.073
(-1.22) (-0.97) (0.49) (0.04)

Network feature ×DHighFSI -4.778** -6.773** -2.301* -1.219
(-2.56) (-2.49) (-1.97) (-0.42)

Observations 45,492 45,492 45,492 45,492
Within R2, % 12.1 12.1 11.9 11.8

Network feature High-Low -3.816*** -5.604** -2.607*** -1.292
(-2.88) (-2.58) (-3.27) (-0.68)
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Table A19: ETF Network Features and Mispricing in 2020, by Style Box Position

This table reports reports the estimates of β2 of specification:

Mispricingf,t = β1 × PM activityf ×DLow F SI
t + β2 × PM activityf ×DHigh F SI

t +

+ γ′1Xf,t ×DLow F SI
t + γ′2Xf,t ×DHigh F SI

t + δ′1Yf ×DLow F SI
t + δ′2Yf ×DHigh F SI

t + αMS + αt + εf,t

in subsamples of US equity ETFs formed by excluding all funds in their Morningstar style box cell every month. For example,
in row ‘Large’ and column ‘Blend’ we estimate the regression on all ‘Mid’ and ‘Small’ ETFs as well as ‘Large’ ‘Value’ and
‘Growth’. The last row and column exlude the entire style or size category, e.g. all ‘Large’ ETFs.

The dependent variable is ETF mispricing, absolute value of the relative premium of ETF share price over its net asset
value per share, estimated with close prices. PM activity is as of 2019. Daily DHigh F SI equals 1 when the daily Financial
Stress Index is above 0 (stress above average, as per OFR definition). DLow F SI = 1 when the daily Financial Stress Index is
negative. Daily controls include bid-ask spread on the ETF share and its square, daily benchmark index return and its square,
and daily turnover of ETF shares on the exchange. Other controls are fund characteristics: logarithms of fund size and age
(as of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket size, PM transaction fee and net
expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of creation and redemption fees. All
regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors clustered by
fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

Blend Growth Value All size

Large -4.300*** -3.196*** -4.001*** -4.839***
(-3.55) (-2.79) (-3.32) (-3.05)

Mid -3.556*** -3.765*** -3.711*** -4.197***
(-3.02) (-3.17) (-3.14) (-2.81)

Small -2.733*** -2.872*** -3.574*** -1.925**
(-3.09) (-2.74) (-3.21) (-2.35)

All style -3.326*** -2.655** -4.623***
(-2.93) (-2.07) (-3.18)
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Table A20: ETF Network Features and Mispricing in 2020: Inattention

This table reports the results of daily panel regressions of the end-of-day fund mispricing on network characteristics:

Mispricingf,t = β1 × PM activityf ×DLow F SI
t ×DLow Inatt

t + β2 × PM activityf ×DLow F SI
t ×DHigh Inatt

t +

+ β3 × PM activityf ×DHigh F SI
t ×DLow Inatt

t + β4 × PM activityf ×DHigh F SI
t ×DHigh Inatt

t +

+ γ′1Xf,t ×DLow F SI
t + γ′2Xf,t ×DHigh F SI

t + δ′1Yf ×DLow F SI
t + δ′2Yf ×DHigh F SI

t + αMS + αt + εf,t

The regression is estimated on a daily panel of 432 US equity ETFs in 2020. The dependent variable is ETF mispricing, absolute
value of the relative premium of ETF share price over its net asset value per share, estimated with close prices. PM activity
is as of 2019. Daily DHigh F SI equals 1 when the daily Financial Stress Index is above 0 (stress above average, as per OFR
definition). DLow F SI = 1 when the daily Financial Stress Index is negative. Daily DHigh Inatt equals 1 when the inattention
dummy for the day equals 1, DLow Inatt equals 1 otherwise. The penultimate and last rows of the table report results of t-tests
that β2 − β1 = 0 and β4 − β3 = 0, respectively.

Friday inattention dummy equals 1 on Fridays, and 0 otherwise. Stock announcements inattention dummy equals 1 if
the number of stock-level EPS announcements during the day was above the sample median (32), and 0 otherwise (according
to I/B/E/S). Macro announcements inattention dummy equals 1 if during the day there was at least one of the key macro
announcements (Savor and Wilson (2014)), and 0 otherwise.

Daily controls include bid-ask spread on the ETF share and its square, daily benchmark index return and its square, and
daily turnover of ETF shares on the exchange. Other controls are fund characteristics: logarithms of fund size and age (as
of 2019), benchmark index volatility of daily returns in 2019, logarithm of creation basket size, PM transaction fee and net
expense ratio (in bps), and in-kind redemption dummy. Transaction fee is the average of creation and redemption fees. All
regressions include Morningstar Investment Category and date fixed effects. t-statistics based on standard errors clustered by
fund are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

ETF mispricing, basis points

Friday Stock
announcements

Macro
announcements

PM activity ×DLowFSI ×DLow Inatt -0.977* -0.755 -0.865
(-1.68) (-1.23) (-1.48)

PM activity ×DLowFSI ×DHigh Inatt -0.680 -1.118* -1.296**
(-1.10) (-1.96) (-2.05)

PM activity ×DHighFSI ×DLow Inatt -3.463*** -2.851** -3.470***
(-3.22) (-2.42) (-3.23)

PM activity ×DHighFSI ×DHigh Inatt -3.623*** -3.931*** -3.739***
(-3.11) (-3.81) (-3.18)

Observations 109,134 109,134 109,134
Within R2, % 16.9 17.0 16.9

PM activity ×DLowFSI High-Low Inattention -0.297* 0.363* 0.431*
(-1.86) (1.90) (1.88)

PM activity ×DHighFSI High-Low Inattention 0.160 1.080** 0.268
(0.29) (2.33) (0.44)
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B Proof of Proposition 1

We start with writing down FOC for problem (7):

γσ2

u−∑
k 6=n

xk

− 2γσ2xn − Cnp̄sign(xn) = 0. (14)

Recall that p̄ = δ − γσ2s is the average of pA and pB, or the price of both assets in the
absence of demand shock u.

The maximization problem (7) contains an absolute value |xn|, making the maximiza-
tion function non-differentiable at zero. Thus the solution of the problem belongs to the set
of FOC roots augmented by zero.

B.1 Step 1

First, we observe that if FOC is satisfied at some non-zero xn, then zero allocation
cannot be a solution to the maximization problem.

Indeed, one can geometrically present the maximization function as a combination of
two downward parabolas intersecting at zero. The vertexes of these two parabolas, which
are the only potential roots for FOC, have non-negative ordinates. It means that the profit
calculated at FOC roots (if it exists) is always non-negative, compared to the exactly zero
profit at 0, and it is strictly positive if the solution is non-zero.

It also follows from the geometrical representation that FOC can potentially have
zero, one or two solutions. In case of two solutions, one would be positive and one would be
negative.

B.2 Step 2

We next show that in equilibrium arbitrageurs cannot sell short a cheaper security,
i.e., negative FOC solutions xn < 0 cannot exist in equilibrium for any n.

We start by rearranging terms in the FOC (14) to obtain the expression for xn:

xn = u−
N∑
k=1

xk − Cn
p̄

γσ2 sign(xn) (15)

Summing these equations for all n such that FOC is satisfied and rearranging terms,
we obtain the expression for ∑k∈active xk, where the set of active agents includes those with
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xk 6= 0 and we denote its size as Nact:

∑
k∈act

xk = Nact

1 +Nact

u− p̄

(1 +Nact)γσ2

∑
k∈act

Cksign(xk).

For all non-active agents, xk = 0, so ∑k∈active xk = ∑N
k=1 xk and hence

N∑
k=1

xk = Nact

1 +Nact

u− p̄

(1 +Nact)γσ2

∑
k∈act

Cksign(xk). (16)

Substituting the latter into the expression for xn, we obtain

xn = 1
1 +Nact

u− Cnp̄

γσ2 sign(xn) + p̄

(1 +Nact)γσ2

∑
k∈act

Cksign(xk). (17)

Now, consider two potential options for xn. First, assume that at the optimum all
xn are non-positive, some of them being strictly negative. Consider the expression (16) for
the sum of all allocations. The first term on the right-hand side is positive as u > 0. The
second term is positive as well, because by assumption sign(xk) = −1 for all active agents.
But by initial assumption, the left-hand side is negative. Thus, it is a contradiction.

Second, assume that at the optimum xi > 0 and xj < 0 for some i, j. The difference
xj − xi should thus be negative. Write down this difference explicitly using (17):

xj − xi = Cj p̄

γσ2 + Cip̄

γσ2 > 0,

which is again a contradiction.
Therefore, at the optimum we can only have non-negative allocations xn ≥ 0.

B.3 Step 3

In the next step, we show that if an arbitrageur is active in equilibrium, then all
arbitrageurs with lower or equal costs must also be active. We start by assuming the contrary
and show that the best response for the agent with zero allocation is positive.

Assume that xi > 0 and Ci ≥ Cj. The best response for agent j is either positive xj
satisfying FOC or zero xj if FOC has no positive solutions. We now search for a positive
solution for FOC of agent j.

From (15) (assuming positive xj):

xj = u

2 −
1
2
∑
k 6=j

xk −
Cj p̄

2γσ2 .
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∑
k 6=j xk can be expressed from the FOC for agent i, as xi > 0:

∑
k 6=j

xk = u− xi −
Cip̄

γσ2 .

Substituting it into the formula for xj, we get:

xj = 1
2xi + (Ci − Cj)

p̄

2γσ2 ,

xi > 0 and Ci ≥ Cj, so xj (the best response of agent j) is positive. Hence, zero allocation
is not an equilibrium strategy for this agent.

B.4 Step 4

So far, we have shown that all potential equilibria have the following structure: m
agents with the lowest costs invest actively, all others do not invest at all. In the next
step, we prove that for a given set of parameters, multiple equilibria cannot exist. In other
words, if there exists an equilibrium with xi > 0 and xj > 0, then there could not exist an
equilibrium with xi > 0 and xj = 0.

Assume that both strategies are equilibria. Denote xi > 0, xj > 0 as Equilibrium 1
and xi > 0, xj = 0 as Equilibrium 2.

As xj,1 > 0, xj,1 satisfies FOC, so

xj,1 = u

1 +N1
+ p̄

(1 +N1)γσ2

∑
k 6=j

Ck −
N1Cj p̄

(1 +N1)γσ2 ,

where N1 is the total number of active agents in Equilibrium 1.
Now, solve for the best response of player j in Equilibrium 2. As before, we will

figure out whether its FOC has a positive solution. If it does, this solution must satisfy the
following:

xj,2 = u

2 −
1
2
∑
k 6=j

xk,2 −
Cj p̄

2γσ2 .

We find ∑k 6=j xk,2 by summing up FOCs for xk,2:

∑
k 6=j

xk,2 = N1 − 1
N1

u− p̄

N1γσ2

∑
k 6=j

Ck,

where we used that the number of active agents in Equilibrium 2 is N2 = N1 − 1.
Next, substitute ∑k 6=j xk,2 into the equation for xj,2:
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xj,2 = u

2N1
+ p̄

2N1γσ2

∑
k 6=j

Ck −
Cj p̄

2γσ2 = 1 +N1

2N1
xj,1 > 0

as xj,1 > 0. So we found a positive FOC solution for agent j in Equilibrium 2, so xj = 0 is
not an equilibrium, by contradiction.

B.5 Step 5

So far we have proved that the pure strategy Nash equilibrium in model (7) is unique,
if exists at all. Now we conclude the proof of part (a) of Proposition 1 by characterising the
equilibrium for each set of parameters.

If costs are very high even for the agent with minimal costs, then nobody invests in
equilibrium. The best response for agent 1 is:

x1 = u

2 −
C1p̄

2γσ2 > 0 iff C1 <
uγσ2

p̄
. (18)

We can write a similar expression for agent m > 1 (recall that agents are ordered
with respect to their costs, so m denotes both the index and the number of active agents):

xm = u

m+ 1 + 1
m+ 1

p̄

γσ2

∑
j 6=m

Cj−
Cmp̄

γσ2
m

m+ 1 > 0 iff Cm <
uγσ2

mp̄
+ m− 1

m
Cact,m, (19)

where Cact,m is the average costs for agents i < m.
The number Nact of active agents in equilibrium is thus determined by (18) and (19).

If Cn is the largest cost for which (19) is satisfied, then in equilibrium agents 1, 2, ..., n take
non-zero positions, and others are inactive. The equilibrium allocations are given by:

xi = 1
1 + n

u+ 1
1 + n

p̄

γσ2

∑
k≤n
k 6=i

Ck −
n

1 + n
Ci

p̄

γσ2 .

It is easy to see that xi > 0 if (19) holds for all i from 1 to n and for all i > n zero
trading is the equilibrium best response.

B.6 Step 6

Finally, to find the expression for the equilibrium mispricing, recall from (6) that

pB − pA = 2uγσ2 − 2γσ2∑
k

xk.
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To obtain the expression for mispricing, substitute the sum of arbitrageur allocations
from (16):

Misp1 = 2uγσ2

1 +Nact

+ 2p̄
1 +Nact

∑
k∈act

Ck.

This constitutes part (b) of Proposition 1.

C Proof of Equation (11)

Use formula (8) to find the number of active arbitrageurs. In case of a uniform cost
distribution, the inequality takes the following form:

C + n(C − C)
N

<
uγσ2

np̄
+ 1
n

n−1∑
k=1

(
C + k(C − C)

N

)
.

Expand the sum:

C + n(C − C)
N

<
uγσ2

np̄
+ n− 1

n
C + (n− 1)(C − C)

2N ,

n2 + n− 2N
(C − C)

uγσ2 − Cp̄
p̄

< 0.

By assumption, C < uγσ2

p̄
, hence, according to the Vieta’s formula, the quadratic

form on the left-hand side has two real solutions, one positive and one negative. To find
the maximal integer n satisfying the inequality, we should solve for the positive root of the
following equation and take the integer part of the solution:

x2 + x− 2N
(C − C)

uγσ2 − Cp̄
p̄

= 0,

x1,2 =
−1±

√
1 + 8N(uγσ2−Cp̄)

(C−C)p̄

2 ,

nmax =
1

2


√√√√1 + 8N(uγσ2 − Cp̄)

(C − C)p̄
− 1

 .
Substituting nmax and the costs into the mispricing formula (10), we obtain equation

(11).
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