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Abstract

We model procurement auctions held by institutional traders seeking fulfillment for large

trades. The dealer who wins such an auction might fill the order out of inventory or access the

market for additional volumes. How many dealers should the trader contact? There is a general

tradeoff: an additional dealer intensifies competition and may improve matchmaking, but also

intensifies information leakage. We show that information leakage can be an endogenous search

friction in that the trader does not always contact all available dealers. There is also a question

of information design: what should the trader reveal about her desired trade? In the model,

it is optimal to provide no information at the bidding stage. There are also implications for

market design and regulation.
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1 Introduction

Institutional traders often have relationships with multiple dealers. When seeking execution of

large orders, they may solicit quotes from more than one, in search of the best quote. But each

additional dealer contacted comes with a tradeoff. On the one hand, the additional dealer may

reduce the ultimate cost of procurement by intensifying competition among the dealers for the

trader’s business. The additional dealer may also be able to provide fulfillment more efficiently—

for instance the dealer might, by virtue of an existing position, be able to internalize the trader’s

order rather than expose it to the market. On the other hand, the very act of reaching out to

an additional dealer creates information leakage, which can be costly because a losing dealer can

leverage knowledge of the trader’s presence to front-run on the market.

Motivated by this issue, we propose a model of these tradeoffs. A client wishes to either buy or

sell a large position of a security and seeks fulfillment through a dealer. Our main results answer

how this client optimally orchestrates her procurement process. How many dealers should she

contact? We show that the client does not always find it optimal to contact all available dealers. In

that sense, the aforementioned concern about information leakage (and the front-running it leads

to) can be interpreted as an endogenous search friction. What information should she provide

about her desired trade while soliciting quotes? Optimizing over all information structures, we

show it is unambiguously optimal to provide no information—precisely to mitigate front-running.

In addition to shedding light on this search problem, our results also have implications for the

design and regulation of trading protocols employed in a variety of markets.

Model and equilibrium. In the model, the client issues a request for quotes (RFQ), contacting

either one or two dealers. Each dealer is either long or short in the security, where these positions

are unknown to the client (although, for simplicity, we assume that these positions are common

knowledge among the dealers). The contacted dealers provide two-sided quotes. Using only the

relevant side of the submitted quotes, the client conducts a sealed-bid, second-price auction (with

reserve). The winning dealer then learns the client’s desired trade, while the losing dealer can only

make inferences based on the RFQ itself, together with the auction’s outcome. The winning dealer

might fulfill the client’s order in either of two ways. First, he might internalize the order against

his inventory. However, we assume position limits for the dealers, so that internalization is possible

only if the dealer is long (short) and the client’s order is to buy (sell). Second, the winning dealer

may fulfill the client’s order by trading on the market, where our model permits two periods of

on-market trading. Losing dealers are also free to trade on the market.

In equilibrium, a losing dealer trades on the market in roughly two distinct ways. If he is long

(short) while the client’s order is to buy (sell), then he might provide liquidity to the winning dealer

by selling (buying), which reduces the winning dealer’s trading costs. On the other hand, he might

front-run the winning dealer by buying (selling) initially and subsequently reversing those trades,

which could increase the winning dealer’s trading costs.1 Both types of trading are profitable for

1This behavior is what we refer to as “front-running,” and it comports with its legal definition whereby trading
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the losing dealer. Anticipating this trading behavior, dealers’ bids account for both (i) the trading

costs they would incur if they won, and (ii) the opportunity cost consisting of the profits they

would obtain if they lost.

Our main results pertain to RFQ policies, which specify how the number of dealers she contacts,

the signal she provides, and the reserve prices she specifies will depend on characteristics of the

client’s desired trade. One question is what information the client ought to provide to the dealers

while issuing the RFQ. The number of dealers contacted might already signal the client’s desired

trade (for instance, if the client’s policy is to contact two dealers more frequently when buying than

when selling). But other information might be provided on top of that. One extreme is the case of

no disclosure. In our model, the prior distribution of desired client trades has two-point support:

the client will wish either to buy or to sell a fixed amount. Hence, no disclosure is equivalent to

asking the dealers to “make a two-sided market” (and saying nothing else about her desired trade).

Can the client do better by revealing additional information? Such additional information would

have an effect because it facilitates a losing dealer’s ability to trade on the market, potentially

increasing the scope for both harmful front-running and helpful liquidity provision. In general, the

client provides the dealers with a signal about her desired trade, as in Bayesian persuasion. For

example, one possibility is the opposite extreme: the case of full disclosure, in which the client fully

reveals her desired trade (in other words, asking for a “one-sided market”). We obtain a strong

result: no disclosure is unambiguously optimal among all information structures. Notably, this

result is in line with common industry practice, where additional information is rarely volunteered

at the RFQ stage.

To understand the optimality of no disclosure, note first that information design makes a dif-

ference only to a dealer who is contacted but does not win the RFQ, and thus only when the client

contacts both dealers. Having observed this, the intuition can be explained by focusing on the case

in which both dealers are initially long. In the full-disclosure regime, the losing dealer can condition

his first-period trade on the direction of the client’s order. He uses this ability to do some amount

of front-running in both cases: (i) if the client’s order is to buy, he buys in the first period then sells

back a larger amount in the second period (providing liquidity on net), (ii) if the client’s order is

to sell, he sells in the first period then buys back the same amount in the second period (providing

no liquidity on net). We now contrast this with the no-disclosure regime, where the losing dealer’s

first-period trade cannot condition on the direction of the client’s order and must reflect a compro-

mise between those two cases. This reduces the amount of front-running. Moreover, it does not

reduce the amount of liquidity provided: (i) neither in the first period, because the losing dealer

had not been providing liquidity in the first period under full disclosure, (ii) nor in the second

period, because the direction of the order is anyway revealed prior to the second period through

the winning dealer’s equilibrium first-period trades. By reducing front-running without reducing

liquidity provision, the elimination of disclosure creates two effects: (i) the winning dealer’s trading

costs decline, and (ii) the losing dealer’s profits (i.e., the winning dealer’s opportunity cost) decline.

on “non-public market information concerning an imminent block transaction” is prohibited (cf. FINRA Rule 5270).
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Both effects lead dealers to bid more aggressively, reducing the cost of procurement for the client.

Finally, we answer the related question about how many dealers the client ought to contact. It

is not always optimal to contact all available dealers. In particular, this feature obtains despite the

fact that our model does not feature exogenous search frictions, as assumed by Duffie, Gârleanu

and Pedersen (2005) and much of the follow-on literature.

That the client can benefit from restricting participation in her procurement auction contrasts

with conventional auction models, where the presence of additional bidders tends to unambiguously

benefit the auctioneer. The reason is that these dealers interact not only in the auction but also after

the auction, on the market. In particular, dealers who are contacted but do not win will front-run on

the market, raising the winning dealer’s trading costs; it follows that an additional competitor in the

auction might actually induce a dealer to bid less aggressively. The client optimally contacts only

a single dealer when this risk of front-running is highest: when she needs to buy (or, respectively,

sell) and when there is a sufficiently large prior probability that the dealers are initially long (or,

respectively, short). This intuition also relates to our result about the optimality of no disclosure:

this information policy is optimal precisely because it reduces the scope for front-running by the

losing dealer, thereby inducing more aggressive bids.

Applications. Our model is relevant for a variety of settings and asset classes. Indeed, the client’s

RFQ process could be implemented informally, via traditional “voice” trading—in which case our

results rationalize some behaviors observed in practice. Alternatively, it could be implemented via

formal RFQ protocols, such as those in use on swap execution facilities (SEFs)—in which case our

results have implications for how these protocols should be designed. Furthermore, the on-market

trading of our model could refer to a centralized exchange (as exists in, e.g., equities trading).2

Alternatively, for asset classes that trade over the counter, it could refer to an inter-dealer market

(as exists in, e.g., bond trading).

Just as it is central to our analysis, front-running is often cited as an important consideration

by market participants in these settings. For example, the CFTC had once proposed a rule that

would mandate RFQs to be sent to no fewer than five dealers. (The rule was since adopted with the

requirement reduced to three.) Comment letters from Bloomberg, BlackRock, MetLife, Barclays,

Morgan Stanley, and others objected, claiming that it is sometimes advantageous to contact fewer

dealers—precisely because doing so limits the front-running and information leakage that we model:

Several commenters specifically noted that the five market participant requirement may

result in increased spreads for participants because non-executing market participants

in the RFQ could “front run” the transaction in anticipation of the executing market

participant’s forthcoming and offsetting transactions. (CFTC, 2013)

Our analysis is very much in line with this concern about front-running. Indeed, our results lend

support to this argument against such rules mandating a trader to contact a minimum number of

2Such a centralized exchange is sometimes referred to as the “downstairs” market. In contrast, block trades (such
as that between the client and the winning dealer in our model) are sometimes referred to as occurring “upstairs.”
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potential counterparties.

Related literature. Our model assembles several moving parts, and each of those parts relates

to a separate literature.

In the procurement auction that the client conducts, dealers’ bids are affected by subsequent

on-market trading that they anticipate. Related is the literature on auctions with externalities,

which is motivated by settings with downstream interaction among the bidders (Jehiel, Moldovanu

and Stacchetti, 1996; Jehiel and Moldovanu, 1996, 2000). Also related, Dworczak (2020) considers

mechanism design in the presence of aftermarkets.

When soliciting bids, the client chooses what information to provide. Milgrom and Weber (1982)

analyze auctions with affiliated values in which the auctioneer can publicly disclose information

prior to bidding. According to their classic linkage principle, the auctioneer optimally discloses

everything she knows. In sharp contrast, in our different setting, we find that the client optimally

discloses nothing about her intended trade. Bergemann and Pesendorfer (2007) analyze auctions

with independent private values in which the auctioneer can privately disclose information to each

bidder prior to bidding.3 Methodologically, our analysis of the client’s information design problem

uses tools from the Bayesian persuasion literature (Kamenica and Gentzkow, 2011).

There is also the on-market trading that follows the auction. In some cases, losing dealers

front-run in a way and for reasons reminiscent of the literature on predatory trading (Brunnermeier

and Pedersen, 2005; Carlin, Lobo and Viswanathan, 2007; Sannikov and Skrzypacz, 2016). This

behavior raises trading costs for the winning dealer and hence the client’s cost of procurement. The

client can, however, influence the extent of front-running through the information she provides and

the number of dealers she contacts.

Finally, the client’s attempt to select a counterparty in our model connects to the literature on

counterparty search. In the canonical model of Diamond (1982), and in its adaptations to over-the-

counter markets (Duffie, Gârleanu and Pedersen, 2005, 2007), search is modeled as an exogenous

and random matching process. The parties meet randomly in pairs and bargain over the terms of

trade. We contribute to this literature by micro-founding and endogenizing the client’s search for a

suitable dealer. In our model, the client conducts a batch search by soliciting RFQs from potentially

multiple dealers. What may prevent her from contacting all available dealers in equilibrium is not

a physical barrier, but adverse effects due to front-running by a dealer who is contacted but not

chosen.

The most closely related papers are those that similarly micro-found search frictions in the

context of counterparty search. In Burdett and O’Hara (1987), a trader does not contact all

potential counterparties because of reduced-form front-running concerns. In Keim and Madhavan

(1996), this is because contacts are costly. In Zhu (2012), this is because search is sequential with

expiring offers. In Riggs, Onur, Reiffen and Zhu (2020), this is because contacts are costly and

3They assume that the auctioneer has full control over each bidder’s information structure. Additionally, others
have investigated settings in which bidders are endowed with private information of their own, so that the auctioneer
has only limited control over what the bidders know (Eső and Szentes, 2007; Li and Shi, 2017).
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due to the presence of a winner’s curse.4 These papers differ from our model in a variety of ways.

Perhaps most significantly, none of them allow the trader to vary the information available to

potential counterparties at the RFQ stage; hence, they do not address the questions of information

design that we study.

2 Model

We begin with a formal description of the model. We next discuss some of the key modeling choices,

then introduce the parametric assumptions used in our baseline analysis.

2.1 Setup

Players. There are three players: a client and two dealers. The dealers are labelled A and B,

and it is useful to define I0 = ∅, I1 = {A}, and I2 = {A,B}. The client realizes a trading need of

size s̄ shares. Depending on whether this is to buy or to sell, we say that the client’s trading need

is s ∈ {−s̄, s̄}. The prior probability that the client seeks to buy (i.e., that s = s̄) is φ0 ∈ (0, 1).

Timing and information sets. First, the client observably commits to a request-for-quote

(RFQ) policy. Such a policy consists of a finite realization space Σ together with a profile of

distributions (πs′)s′∈{−s̄,s̄} over Σ× {0, 1, 2} × R2. The interpretation is that, given the realized s,

a realization (σ,M, b̄) ∼ πs will be drawn. At that point, the dealers i ∈ IM will be contacted,

informed of σ, and invited to participate in a second-price auction with M bidders and with reserve

prices b̄ = (b̄−s̄, b̄s̄).

Second, Nature draws the client’s trading need s ∈ {−s̄, s̄}, where again, φ0 is the prior prob-

ability of s̄. Nature also draws a vector of initial dealer inventories (eA, eB) ∈ {−ē, ē} × {−ē, ē}.
Both dealers commonly observe the entire vector of realized inventories. We parameterize the joint

distribution of (eA, eB) so that (i) ρ ∈ (−1, 1) is the correlation of eA and eB, and (ii) for each

dealer i, ψ ∈
(

max{0,− ρ
1−ρ},min{1, 1

1−ρ}
)

is the marginal probability that ei = ē. To that end:

(eA, eB) =



(ē, ē) w.p. ψ[1− (1− ψ)(1− ρ)]

(ē,−ē) w.p. ψ(1− ψ)(1− ρ)

(−ē, ē) w.p. ψ(1− ψ)(1− ρ)

(−ē,−ē) w.p. (1− ψ)[1− ψ(1− ρ)]

Third, the client follows through on the RFQ policy to which she previously committed. That

is, (σ,M, b̄) ∼ πs is drawn and observed by each dealer i ∈ IM . Such a realization is called an

RFQ.

4Related, Bulow and Klemperer (2002) show that an auctioneer might benefit from restricting participation in
common-value or almost-common-value auction settings because of the presence of a similar winner’s curse. An
auctioneer might also benefit from restricting participation if it is costly for bidders to learn their values (Levin and
Smith, 1994) or to prepare their bids (Menezes and Monteiro, 2000).
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Fourth, each dealer i ∈ IM submits a bid. Such a bid is a vector bi = (bis′)s′∈{−s̄,s̄}, where bis′

represents the smallest commission that dealer i will accept for facilitating a trade of s′ shares.

Fifth, a second-price auction with reserve is held. Let b
(m)
s denote the mth order statistic among

(bis)i∈IM . The winning dealer is chosen uniformly at random from
{
i ∈ IM : bis = min(b̄s, b

(1)
s )
}

.

If there is a winner, then the auction also determines a procurement cost c ≡ min(b̄s, b
(2)
s ). The

winning dealer then observes s, while any losing dealers observe only the identity of the winner. If

there is no winner, the game ends.5

Sixth, two periods of on-market trading occur. For the first such period, each dealer i ∈
{A,B} simultaneously submits a market order to buy xi1 ∈ R shares. These first-period trades

are consummated at the price p1 = p0 + θ(xA1 + xB1 ). Having observed p1, each dealer i ∈ {A,B}
then simultaneously submits a market order to buy xi2 ∈ R shares. These second-period trades are

consummated at the price p2 = p1 + θ(xA2 + xB2 ). Dealers make these trading decisions subject to

the following constraints: (i) if dealer i wins, then ei + xi1 + xi2 − s ∈ [−ē, ē]; (ii) if dealer i does

not win, then ei + xi1 + xi2 ∈ [−ē, ē]; (iii) if dealer i is not contacted, then xi1 = 0. To simplify the

proofs, we also assume the constraint xi1 ∈ [−s̄, s̄], which never binds and is assumed only to reduce

the number of cases that need to be formally checked.6

Seventh, the client pays the winning dealer c + sp0 in exchange for s shares. Outstanding

positions are then liquidated for a dividend of p0.

Payoffs. If there is no winner, the client’s payoff is ū. If there is a winner, the client’s payoff is

−c. If dealer i wins, his payoff is c+ (ei +xi1 +xi2− s)p0− p1x
i
1− p2x

i
2. If dealer i does not win, his

payoff is (ei + xi1 + xi2)p0 − p1x
i
1 − p2x

i
2. All players are risk-neutral expected utility maximizers.

2.2 Remarks

Our formulation of client’s RFQ policy generalizes how communication is modeled in the Bayesian

persuasion literature (Kamenica and Gentzkow, 2011). In that literature, a sender, who will pri-

vately observe her type s ∈ S, commits to a signal realization space Σ together with a profile of

distributions (πs′)s′∈S over Σ. In our formulation, the client likewise commits to a policy that

determines the signal she will send—but also the number of dealers she will contact and the reserve

prices she will use. A standard interpretation of this commitment assumption is that commitment

power may come informally through reputation and repeated interaction.7 And indeed, clients do

5Requiring the game to end here is equivalent to requiring that all subsequent on-market trades by the dealers
be for zero shares (i.e., xi1 = xi2 = 0 for i ∈ {A,B}). We could allow for nonzero on-market trades when there is no
winner; however, no such trading would take place in the equilibrium of any such subgame. Thus, requiring the game
to end is a harmless assumption made only for simplicity.

6Here is the intuition for why this constraint on first-period trade sizes does not bind in equilibrium. The most
the winning dealer would ever need to trade on the market (to satisfy constraints on his final inventory) is s̄. Due to
price impact, he would not wish to trade more than that amount in total—and certainly not more than that amount
in the first period. Given that, the losing dealer also would not wish to trade more than s̄ in the first period.

7One of our main results is that it is optimal for the client to communicate no information through the signal
that she sends (although other information may be communicated through the number of dealers that she contacts).
Section 4 shows that this optimality of no disclosure does not depend on the client’s ability to commit. Thus, allowing
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typically have a limited number of dealers with whom they interact repeatedly.

The type of client-dealer interactions that we model are often of a repeated nature in reality.

(Indeed, as just discussed, the standard commitment assumption might be motivated by repeated

interaction.) Although dynamics could introduce several important and interesting forces, this

paper focuses a one-shot version of this interaction because that seems a natural place to start.

We assume that the client uses a second-price auction with reserve. Identical results would

be obtained if the auction mechanism were a first-price auction with reserve. However, as in

Bertrand competition, we would then need to either (i) specify an appropriate tie-breaking rule,

or (ii) use a model with discrete bidding increments. Our assumption of a second-price auction

circumvents these issues. However, this assumption is not completely without loss. Indeed, given

that the dealers’ initial inventories may be correlated, more complex auction formats could permit

full surplus extraction (e.g., Crémer and McLean, 1988). Our analysis rules out such possibilities

because we think it is more realistic to focus on standard auction formats.

We assume that dealers are contacted simultaneously. This assumption reflects settings such as

SEFs, where it is commonplace and, in some cases mandatory, that multiple dealers be contacted

simultaneously.8 In contrast, there is a sizable literature on sequential search markets, and indeed,

other settings may be more aptly thought of in such terms. However, we suspect that the main forces

of our model would be at work also in such settings. A related point concerns the source of dealer

uncertainty in the model. In sequential search, a dealer’s uncertainty about the order in which he

has been contacted plays an important role (Zhu, 2012). In modeling batch search, our analysis

abstracts away from contact-order uncertainty. Instead, dealers’ uncertainty in our model concerns

the direction of the client’s desired trade. Though our model contains no asymmetric information

about the security’s fundamental value, uncertainty about the client’s trading direction is relevant

because markets are imperfectly competitive (i.e., because there is price impact).

We have assumed that dealers have position limits of ē shares, in the sense that each dealer’s

final inventory (after both periods of on-market trading and after any trade with the client) must

not exceed ē shares, either long or short. This position limit could be interpreted as either a risk

limit or a capital constraint.9 It is also not important that these position limits are binding at

the initial inventories. Indeed, some cases in which there is a given amount of slack at the initial

inventories are equivalent within the model to what obtains under a suitable adjustment to s̄.

The primary interpretation of a dealer’s inventory in our model is the dealer’s proprietary

position. However, a potential secondary interpretation is the order flow of the dealer’s other

(unmodeled) clients. Indeed, if these other clients seek to buy (sell), then that would, all else equal,

the client to commit to a policy for determining signals only strengthens our result about the optimality of no
disclosure.

8We also assume that the contacted dealers know how many other dealers have been contacted. This assumption
also reflects settings such as RFQs made on SEFs. For descriptions of the market structure and regulation pertaining
to swaps trading, see Collin-Dufresne, Junge and Trolle (2020); Riggs, Onur, Reiffen and Zhu (2020).

9We additionally assume that dealers have no holding costs for inventories within the position limits. If such
holding costs were present, they would create a separate trading motive for the dealers. Hence, this assumption
allows us to isolate the trading dynamics that stem from the client’s presence.
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induce the dealer to bid more aggressively for a selling (buying) order from the focal client—just

as a long (short) propriety position would.10

What we aim to capture with the assumption that an un-contacted dealer i must set xi1 = 0

is that in practice, a dealer who was not contacted would not be able to predict (and trade in

anticipation of) the precise moment of the client’s arrival. In contrast, an artifact of the structure

of the model is that the timing of the client’s arrival is common knowledge among the players.

Hence, we impose this constraint to prevent behavior in the model from being driven by this

artifact and to instead force it to align with what we would expect to see in practice.

We have assumed that each dealer knows the other’s realized initial inventory. Although this

assumption of perfect knowledge is extreme (albeit useful for tractability), dealers might be quite

familiar with their competitors in practice. Additionally, dealers might obtain signals about com-

petitors’ positions by, for example, inspecting published indications of interest, by inspecting trade

data, or via communication (e.g., informal backroom chats or so-called “talking your book”). We

have also assumed that a dealer’s information about its competitor is strictly better than that of

the client (who knows only the prior distribution of dealer inventories). This also seems plausible,

especially for clients who interact with dealers at a frequency lower than that at which dealers

interact with each other.

A natural case of interest is that in which the client has symmetric buying and selling needs

(i.e., φ0 = 1
2) and in which the dealers have equal probabilities of being long and short (i.e.,

ψ = 1
2). However, there is value in allowing for asymmetric parametrizations. For example, settings

where dealers are more likely to be long than short (perhaps because there are additional frictions

associated with short positions) are captured by ψ > 1
2 . Likewise, settings where the client is more

likely to be buying than selling (e.g., because the client is a pension fund with young members) are

captured by φ0 >
1
2 .

We assume an exogenous price process, with θ as the coefficient of permanent price impact. This

price process resembles, for example, the baseline model of Bertsimas and Lo (1998). Moreover,

it could be micro-founded by adding a competitive fringe of long-term investors to the model.

Specifically, assume that at each trading period, the aggregate demand of these investors is Y (p) =
1
θ (p0−p). Such a downward-sloping demand could stem from several sources, including risk aversion,

institutional frictions, or concerns about adverse selection (although, to be clear, our model does

not feature asymmetric information about fundamentals). Note also that this aggregate demand

depends only on the current price p, so that these traders do not attempt to profit from short-term

price swings. Brunnermeier and Pedersen (2005) make precisely the same set of assumptions, which

they argue could be appropriate if these long-term traders lacked the information, skills, or time

necessary for predicting price changes.

Furthermore, the assumed price process is a deterministic function of the previous period’s

price and the current period’s trades. This is mainly for tractability: adding price shocks would

complicate the belief updating of losing dealers.

10A riskless principal trade is said to occur when a dealer conducts opposing trades with two separate clients.
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We have assumed that the client can obtain execution only by trading with a dealer (and cannot

trade on the market directly).11 This assumption is realistic for many institutional investors who

commonly lack either the infrastructure, the expertise, or the regulatory clearance to access markets

directly. Alternatively, the client’s outside option ū might be interpreted as her expected utility

derived from other modes of trading. (We do, however, subsequently specialize the model to the

case of ū = −∞ so as to ensure that the client uses a dealer on path.)

We restrict attention to fixed-price contracts (as opposed to, for example, contracts that con-

dition on the market prices p1 and p2). This restriction is not unrealistic, as such arrangements

are common in many settings. In addition, fixed-price contracts greatly limit the dimensionality

of bids, thereby making the analysis more tractable. Finally, it is natural to focus on fixed-price

contracts in settings where all parties are risk neutral. Indeed, if dealers were risk averse, then a

motive for conditioning on p1 and/or p2 would be to insure the dealer against price risk (which

would exist in our model if there were price shocks).12

We also restrict attention to situations in which the client awards her entire order to a single

dealer (as opposed to splitting the order across dealers). Partly, this is for simplicity: it limits

the potential outcomes of the auction. Partly, this is to reflect reality: our discussions with in-

dustry participants reveal that the same order is rarely split among competing dealers (although

a subsequent order might well go to a different dealer). Moreover, awarding the entire order to a

single dealer may in fact be optimal for a variety of reasons: (i) share auctions often produce worse

outcomes for the auctioneer than corresponding unit auctions (Wilson, 1979), and (ii) a dealer

who receives part of the order would not internalize the externalities that its trading creates for

dealers who receive the balance of the order, increasing procurement costs for reasons similar to the

double-marginalization problem in a vertical supply chain (as we show formally in Appendix B).

2.3 Parametric assumptions

Henceforth, we set—without loss of generality—the initial price level to p0 = 0, the coefficient of

permanent price impact to θ = 1, and dealers’ position limits to ē = 1.

We also assume the client’s trade size is s̄ ≤ 2. This is not without loss of generality, but yields

conclusions qualitatively similar to what obtains with larger s̄.13

We also assume that the client experiences infinite disutility from not trading (i.e., ū = −∞).

Although this assumption might appear extreme, what it really means is that our analysis will

characterize the cost-minimizing RFQ policy among those ensuring execution with probability one.

11For models of endogenous choice between trading on the market and trading with a dealer, see, e.g., Seppi (1990);
Lee and Wang (2021).

12For an investigation of optimal contracts for principal trading with a risk averse dealer (in a model with price
shocks), see Baldauf, Frei and Mollner (2021a,b).

13The assumption s̄ ≤ 2 is made for tractability. Larger values of s̄ would need to be handled as mathematically
separate cases for the reason that additional constraints come into play. For example, with s̄ > 2, the winning dealer
can never fully internalize the client’s order, and so must trade at least some amount on the market regardless of his
initial position.
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3 Equilibrium

We begin by describing our solution concept, a refinement of weak perfect Bayesian equilibrium

(WPBE). With that in hand, we solve backward, first deriving outcomes following a given RFQ

policy, then deriving an optimal RFQ policy.

3.1 Solution concept

The solution concept is a refinement of WPBE. To explain it, first observe that a WPBE consists

of the following elements: (i) an RFQ policy for the client, (ii) actions for the dealers (i.e., bids

and trades), and (iii) beliefs for the dealers.

Bidding behavior. The first three aspects of the refinement concern bidding behavior. In a

classic second-price auction, there are two payoff-relevant outcomes for each bidder (i.e., winning

and losing), and each bidder has a unique dominant strategy—bidding the difference in its values

across those outcomes. However, a bidder might not have a dominant strategy if the game were

to include not only the auction but also a subsequent strategic interaction that could affect the

relative values of winning and losing. But there is an analogue. In particular, if the equilibrium of

the subsequent interaction were computed and used to fix the bidders’ values for the auction (as by

backward induction), then the auction could be analyzed in isolation. Conceiving of the auction in

isolation in this way, each bidder has a unique dominant bid, as before. Thus, a natural refinement

for the entire game would require that these bids are played in the bidding stage.

As mentioned, in a classic second-price auction, there are two payoff-relevant outcomes for each

bidder: winning and losing. But in auctions with externalities, more outcomes are in play. For

example, a two-bidder auction with externalities has three payoff-relevant outcomes: either bidder A

wins, bidder B wins, or neither wins. Thus, there is again no dominant strategy. However, if such

an auction’s reserve price were non-binding (so that the outcome in which neither wins does not

occur in equilibrium), then there would again be an analogue: bidder A should bid the difference

in its values across the outcomes in which it wins and in which bidder B wins. Thus, a natural

refinement would require that these bids are played under non-binding reserves.

We also require bidders to use symmetric bidding strategies.

Beliefs. The final aspects of the refinement concern dealer beliefs. Although the winning dealer

observes whether the client seeks to buy or sell, the other dealer does not observe this directly and

must instead infer from what he can observe. Our refinement applies to how this other dealer infers

from the winning dealer’s first-period trades.

We focus on equilibria in which these beliefs have a step-function structure. To state this

formally, suppose (without loss of generality) that dealer A is the winning dealer, and let µB2 (xA1 )

denote the probability that s = s̄ under B’s beliefs as a function of A’s first-period trade. We require

this to be a function that jumps from zero to one: (i) for all x ∈ [−s̄, s̄], µB2 (x) ∈ {0, 1}, and (ii) for

11



all x′ < x′′, µB2 (x′) = 1 =⇒ µB2 (x′′) = 1 and µB2 (x′′) = 0 =⇒ µB2 (x′) = 0. One implication of

this requirement is that we focus on separating equilibria in which the winning dealer’s first-period

trade fully reveals the realized s to the other dealer.

We also require these beliefs to satisfy an analogue of the intuitive criterion (Cho and Kreps,

1987). To explain, again suppose (without loss of generality) that dealer A is the winning dealer.

What can dealer B believe about s following an out-of-equilibrium choice for xA1 ? Fix an equi-

librium. For s′ ∈ {−s̄, s̄}, let CA∗ (s′) represent A’s equilibrium trading costs given s′, and let

CA(s′, xA1 , µ
B
2 ) represent A’s trading costs from xA1 and the equilibrium xB1 , together with the

second-period trades in the equilibrium of the game continuing from (xA1 , x
B
1 ) given s′ and given

that B believes s = s̄ with probability µB2 .14 We require that for all out-of-equilibrium xA1 , neither

of the following pairs of conditions holds:

CA∗ (s̄) < min
µB2 ∈[0,1]

CA(s̄, xA1 , µ
B
2 ) and CA∗ (−s̄) > CA(−s̄, xA1 , 0)

CA∗ (−s̄) < min
µB2 ∈[0,1]

CA(−s̄, xA1 , µB2 ) and CA∗ (s̄) > CA(s̄, xA1 , 1)

After stating Lemma 1, we provide an example to illustrate this criterion and to review the moti-

vation that Cho and Kreps (1987) provide for it.

Henceforth, we use equilibrium to refer to this refinement of WPBE.

3.2 Contacting one dealer

We begin by analyzing continuation equilibrium in subgames following RFQs that contact one

dealer. Recall that an RFQ policy is defined by a signal realization space Σ and distributions

(πs′)s′∈{−s̄,s̄} over Σ× {0, 1, 2} × R2. Fix such an RFQ policy. Fix, moreover, some RFQ (σ,M, b̄)

with M = 1. It suffices to focus on RFQs that occur on path, and so we assume π−s̄(σ,M, b̄) +

πs̄(σ,M, b̄) > 0. It is also useful to define

φ =
φ0πs̄(σ,M, b̄)

(1− φ0)π−s̄(σ,M, b̄) + φ0πs̄(σ,M, b̄)

as the posterior probability of s = s̄ induced by this RFQ. Note that φ ∈ [0, 1] and that it need not

coincide with the prior φ0.

Lemma 1. In the class of RFQs that contact M = 1 dealer and guarantee execution with probability

one, the minimum expected procurement cost is ĉ1 = 3s̄2

4 . It is achieved by RFQs featuring reserve

prices b̄ = (3s̄2

4 ,
3s̄2

4 ).

To prove Lemma 1, we begin by deriving the unique equilibrium actions in the subgame following

any RFQ that contacts one dealer. We sketch that derivation below. Then at the end of this section,

14The main subtlety is in defining CA(s, xA1 , µ
B
2 ). Technically, the equilibrium that we have fixed does not specify

what second-period trades would be under out-of-equilibrium beliefs µB2 . Nevertheless, the structure of the model
allows these to be uniquely computed in a straightforward manner.
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we explain how the lemma’s claim follows.

Continuation equilibrium. Because both dealers observe the entire vector (eA, eB), the four

possible realizations of that vector can be analyzed separately. Let us focus on the case of (eA, eB) =

(1,−1). Suppose that dealer B’s beliefs in this case are that s = s̄ with probability

µB2 =

1 if − s̄
6 ≤ x

A
1 ≤ s̄

0 if − s̄ ≤ xA1 < − s̄
6

(1)

In words, if dealer A’s first-period trade is above (below) the cutoff − s̄
6 , then dealer B believes

with certainty that the client is a buyer (seller). For an informal derivation of the unique on-path

actions, consider two subcases:

• First, suppose s = s̄. Ignoring the constraints on final inventory (which will not bind in the

equilibrium), dealers A and B respectively minimize

xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2

(xA1 + xA2 + xB2 )xB2 ,

leading to xA2 = xB2 = −xA1
3 .15 Inducting backward, we obtain xA1 = 0, so that xA2 = xB2 = 0 on

path.

Plugging in these trades, dealer A incurs no trading costs if he wins, so that it is optimal—and

in fact required by the refinement described in Section 3.1—that he bid bAs̄ = 0.

• Second, suppose s = −s̄. Assuming that xA2 = −s̄ − xA1 (which ensures that dealer A’s final

inventory just meets the constraint eA + xA1 + xA2 − s ≤ 1) and ignoring all other constraints on

final inventory, dealers A and B respectively minimize

xA1 x
A
1 + (−s̄+ xB2 )(−s̄− xA1 )

(−s̄+ xB2 )xB2 ,

leading to xB2 = s̄
2 . Inducting backward, we obtain xA1 = − s̄

4 .

Plugging in these trades, dealer A incurs trading costs of 7s̄2

16 if he wins, so that it is optimal—and

in fact required by the refinement described in Section 3.1—that he bid bA−s̄ = 7s̄2

16 .

The client’s cost of procurement. Next, we explain how the lemma’s claim follows from what

we have derived about equilibrium bids. The client’s procurement cost is determined by a second-

price procurement auction. In this case where only one dealer is contacted, the reserve is what sets

the price. Of course, a constraint is that execution does not occur when the dealer’s bid exceeds the

15Note that, although dealer B cannot directly condition xB2 on the realized s, he can do so indirectly because this
is a separating equilibrium in the sense that xA1 reveals s.
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reserve. To ensure execution with probability one, the client’s reserve must be at least the dealer’s

bid in the worst case. If the client wishes to sell, the worst case is (eA, eB) = (1, 1). As we specify

in the proof of Lemma 1, bA−s̄ = 3s̄2

4 in this case. (By symmetry, this is also the worst-case value

for bAs̄ .) Therefore, the expected procurement cost resulting from an RFQ that contacts one dealer,

induces a belief that φ is the probability of s = s̄, and guarantees execution with probability one

results is at least

ĉ1 = φ
3s̄2

4
+ (1− φ)

3s̄2

4
=

3s̄2

4
,

as claimed by Lemma 1. Moreover, the RFQ that uses reserve prices b̄ = (3s̄2

4 ,
3s̄2

4 ) both ensures

execution with probability one and achieves the cost ĉ1.

Note that ĉ1 does not depend on the probability of s = s̄ that the RFQ induces (which we have

labelled φ). This is for two reasons. First, the reserve prices specified by Lemma 1 are constant in

φ. Intuitively, this is because there is no role for information design when M = 1: the contacted

dealer submits a separate quote for each state, and he will moreover learn the state before he has to

trade. Second, these reserve prices are both 3s̄2

4 . Intuitively, this is due to the model’s symmetric

structure. Thus, although ĉ1 can be thought of as a weighted average of the two (with weight φ on

b̄s̄), the weight does not matter. As we will see, this changes when two dealers are contacted: the

analogous quantity ĉ2 will be a non-constant (and in fact non-linear) function of φ, which creates

a role for information design.

Likewise, ĉ1 also does not depend on ρ and ψ, which govern the distribution of (eA, eB). This

is because the client’s cost is set by her reserve prices, and because the reserve prices specified by

Lemma 1 are driven by the worst case. Although (ρ, ψ) affect the distribution over the various

cases for (eA, eB), they do not affect equilibrium outcomes in those cases—and in particular do not

affect the worst case. As we will see, this also changes when two dealers are contacted: the client’s

cost may then be set by the losing dealer’s bid, and thus no longer driven only by the worst case.

The intuitive criterion. Finally, let us provide an example to illustrate what role the intuitive

criterion (Cho and Kreps, 1987) plays in our equilibrium selection. As above, focus on the case of

(eA, eB) = (1,−1). There is another WPBE in which dealer B’s beliefs entail a lower cutoff than

that in (1)

µB2 =

1 if − s̄
2 < xA1 ≤ s̄

0 if − s̄ ≤ xA1 ≤ − s̄
2

(2)

and in which dealer A sells more in the first period when s = −s̄—in particular, selling just enough

to meet the cutoff: xA1 = − s̄
2 . The intuition is that when s = −s̄, A’s inventory constraint binds,

and he must sell on the market. If B believes that s = −s̄, then in the second trading period,

he provides liquidity to A by buying on the market. And because A would like B to provide this

liquidity to him, xA1 = − s̄
2 is set at the cutoff required for B to believe s = −s̄. If a higher choice

for xA1 (e.g., − s̄
4 , as in Lemma 1) would induce B to provide liquidity in the second period, then A

would prefer that. Intuitively, that outcome would allow A to sell only a minority of the necessary
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amount in the first period when B is not providing liquidity, while waiting to sell the majority until

the second period when B is providing liquidity. However, this outcome is incompatible with the

beliefs (2). Under (2), A must instead settle for selling the smallest amount in the first period that

does induce B to provide liquidity (i.e., xA1 = − s̄
2).

However, this alternative WPBE fails the version of the intuitive criterion described in Sec-

tion 3.1. Indeed, in terms of the notation introduced there, A’s equilibrium trading costs are

CA∗ (s̄) = 0 and CA∗ (−s̄) = s̄2

2 . Then consider the out-of-equilibrium choice xA1 = − s̄
4 . We can com-

pute minµ̃B2 ∈[0,1]C
A(s̄,− s̄

4 , µ̃
B
2 ) = CA(s̄,− s̄

4 , 0) = 3s̄2

64 > CA∗ (s̄) = 0 and CA(−s̄,− s̄
4 , 0) = 7s̄2

16 < s̄2

2 .

Intuitively, if s = s̄, then the best that A could expect to achieve from a choice of xA1 = − s̄
4 is a

trading cost of 3s̄2

64 (achieved if B believes s = s̄ with probability zero), which is strictly greater than

his equilibrium trading cost of zero.16 Thus, it would be difficult to make sense of this deviation if

s = s̄. Could the deviation make sense if s = −s̄? Suppose s = −s̄ and A deviates to xA1 = − s̄
4 ,

hoping that—since this deviation would not make sense if s = s̄—the deviation will induce B to

believe s = −s̄. If the deviation does indeed induce B to believe this, then the deviation would

make sense: A’s trading cost would be 7s̄2

16 (as in Lemma 1’s equilibrium), which is strictly less

than his trading cost in this equilibrium of s̄2

2 . Thus, we have an argument that—contrary to the

beliefs (2)—dealer B should infer from a deviation to xA1 = − s̄
4 that s = −s̄.

3.3 Contacting two dealers

We now proceed analogously to analyze continuation equilibrium in subgames following RFQs that

contact two dealers. To do so, fix an RFQ policy. Fix also some RFQ (σ,M, b̄) with M = 2. As

before, assume without loss of generality that π−s̄(σ,M, b̄) + πs̄(σ,M, b̄) > 0, and define

φ =
φ0πs̄(σ,M, b̄)

(1− φ0)π−s̄(σ,M, b̄) + φ0πs̄(σ,M, b̄)

as the posterior probability of s = s̄ induced by this RFQ.

Lemma 2. In the class of RFQs that contact M = 2 dealers, induce beliefs φ, and guarantee

execution with probability one, the minimum expected procurement cost is a convex and differentiable

function ĉ2(φ) that satisfies ĉ2(1
2) < ĉ1. It is achieved by RFQs featuring reserve prices b̄ = (s̄2, s̄2).

The client’s procurement cost is determined by a second-price procurement auction. In this

case where two dealers are contacted, it could in principle be set by either the reserve price or the

losing dealer’s bid. What would transpire if the reserves were low enough to occasionally set the

price? Given our restriction to symmetric bidding strategies, it can be shown that the continuation

equilibrium would entail mixed bidding strategies, in which with positive probability, neither dealer

would meet the reserve. Thus, to ensure execution with probability one, the reserves must be high

16When B believes that s = s̄ with probability µ̃B2 , he chooses xB2 =
(8−7µ̃B

2 )s̄

4(4−µ̃B
2 )

. If we actually have s = s̄ and

xA1 = − s̄
4
, then A best responds with xA2 =

(3µ̃B
2 −2)s̄

4(4−µ̃B
2 )

, leading to a total trading cost of
(3−2µ̃B

2 )(1+µ̃B
2 )s̄2

4(4−µ̃B
2 )

. This

objective is minimized at µ̃B2 = 0, where it evaluates to 3s̄2

64
.
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enough to never set the price. To prove Lemma 2, we therefore begin by analyzing equilibria of

subgames following RFQs that contact two dealers and in which the reserves are sufficiently high

in this sense. We discuss that derivation, then explain how the lemma’s claim follows.

Continuation equilibrium. In the previous section, only one dealer was contacted, and the

other dealer was unable to trade in the first period. Here, both dealers are contacted, and not

only the winner but also the loser may trade in the first period. In some cases, the losing dealer

uses this ability to front-run the winner’s trades. To see this front-running, focus on the case of

(eA, eB) = (1, 1), where both dealers begin long. As we show in the proof, the losing dealer sells in

the first period; this pays off for him if s = −s̄, in which case he buys back in the second period and

nets a profit. Hence, the amount that he sells in the first period depends on his beliefs. If φ = 1,

so that he is sure of s = s̄, then there is no scope to front-run, and he in fact does not trade. But

as φ decreases, he gradually sells more in the first period (ultimately selling s̄
3 if φ = 0).

To explain how bidding behavior is pinned down, let us continue to focus on the case of

(eA, eB) = (1, 1) and s = −s̄. Once trading behavior has been characterized, we can compute

dealer A’s trading costs in each of the three potential auction outcomes: (i) if he wins, (ii) if B

wins, and (iii) if neither wins. However, if the reserve price b̄−s̄ is sufficiently high, then outcome

(iii) becomes irrelevant. Given that, the refinement described in Section 3.1 requires A’s bid to be

determined by the difference in his value across outcomes (i) and (ii). Having derived this bid, we

can then fill in what it means for the reserve price to be sufficiently high in this sense: b̄−s̄ must

be at least this difference. Choosing b̄ = (s̄2, s̄2), as in Lemma 2, satisfies not only this constraint

but also analogous constraints for other realizations of s and (eA, eB).

The client’s cost of procurement. To compute ĉ2, the expected procurement cost under

b̄ = (s̄2, s̄2)—or any other reserves high enough that they never set the price—we simply calculate

a weighted average of the losing bids. The weights are dictated by the parameters ψ and ρ, which

govern the distribution of (eA, eB), as well as φ, which captures the distribution of s conditional on

the RFQ.

In addition to altering these weights, φ also affects the bids themselves. The reason is that the

losing dealer, not having observed the realized s, relies on these beliefs to select his first-period

trade.

To build intuition for how ĉ2(φ) and ĉ1 compare, consider first the case of (eA, eB) = (1, 1),

in which both dealers begin long. We show in the proof of Lemma 2 that if φ = 0, so that the

dealers are certain the client is a seller, then each dealer i bids bi−s̄ = s̄2—in contrast, as previously

mentioned, 3s̄2

4 is the analogous bid when only one dealer is contacted. The bid is larger here

for two reasons. First, the losing dealer’s front-running raises the winning dealer’s trading costs,

so dealers demand more compensation. Second, there is now an additional opportunity cost of

winning—namely, the potential for profitable front-running that would exist if the other dealer

were to win. It follows from this that if the dealers are likely to begin long (i.e., ψ ≈ 1), then

ĉ2(0) > ĉ1. What this means is that for RFQs that reveal the client to be a seller, she is better
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off contacting only a single dealer. Intuitively, in that case little is gained from having contacted

a second dealer (because both are likely long); yet much is lost (because the loser’s front-running

leads to less aggressive bidding). On the other hand, Lemma 2 says that ĉ2(1
2) < ĉ1 (regardless of

ψ and ρ). What this means is that for RFQs that imply the client is equally likely a seller or a

buyer, she gains on net from inducing competition among the dealers.

3.4 Optimal RFQ policies

The previous sections derived continuation outcomes following any RFQ. We now seek to induct

backward so as to obtain the optimal RFQ policy. This problem is potentially complex because

there is a large and rich set of such policies to optimize over. How many dealers should the client

contact—always one, always two, or should she randomize in some way? What signals should she

provide about her desired trade—full disclosure, no disclosure, or something intermediate? How

should she treat buying and selling—symmetrically or asymmetrically? Perhaps surprisingly, the

model yields sharp answers to these questions.

3.4.1 Optimality of no disclosure

Depending on the RFQ policy, the number of dealers contacted may be an informative signal about

the client’s desired trade. However, additional information can be provided beyond that. One ex-

treme is the case of full disclosure, in which the RFQ fully reveals s. This can be operationalized by

defining Σ = {Sell, Buy}, defining π−s̄ to attach probability one to RFQs of the form (Sell,M, b̄),

and defining πs̄ to attach probability one to RFQs of the form (Buy,M, b̄). The opposite extreme—

the case of no disclosure—would be an RFQ policy that reveals nothing beyond what is already

implied by the number of contacted dealers—neither via the arbitrary signal σ nor via the reserve

prices b̄. One implication of the following result is that no disclosure is in fact optimal.

Proposition 3. There exists an optimal RFQ policy with the following properties: (i) Σ is a

singleton {σ0}; and (ii) the distributions (πs′)s′∈{−s̄,s̄} put positive weight on at most the two RFQs(
σ0, 1, (

3s̄2

4 ,
3s̄2

4 )
)

and
(
σ0, 2, (s̄

2, s̄2)
)
.

RFQ policies of the form described in the proposition use reserve prices b̄ = (3s̄2

4 ,
3s̄2

4 ) when

M = 1 dealers are contacted and b̄ = (s̄2, s̄2) when M = 2. That this is consistent with optimality

follows from Lemmas 1 and 2. And given that the client seeks execution with probability one, it

clearly suffices to focus on RFQ policies that always contact either one or two dealers (as opposed

to zero). So to establish the result, it suffices to show that beginning from an RFQ policy of the

form described in the proposition, the client cannot benefit by deviating to a more informative

signal structure. Given that ĉ1 is a constant, a more informative signal has no effect when only

one dealer is contacted. Furthermore, ĉ2(φ) is convex, so that by standard arguments from the

Bayesian persuasion literature (Kamenica and Gentzkow, 2011), the client would actually be worse

off under a more informative signal when two dealers are contacted.
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To build some intuition for this result, note that the disclosure policy is relevant only through

its effect on the information available to the losing dealer in trading period 1. (The winning dealer

always learns s, and the loser always infers it after period 1.) Now the question is how the loser’s

period-1 trade depends on his information about s. With full knowledge of s, the loser would front-

run the winner by trading with him in period 1 (while planning to trade against him in period 2).

But with imperfect information about s (and hence the direction of the winner’s trading), the loser

trades a smaller amount in period 1. This reduces the winner’s trading costs and leads to more

aggressive bidding in the auction. Therefore, the client is better off not revealing anything about

s (beyond what is revealed through the number of dealers she contacts).

Notably, this result is in line with common industry practice, where additional information

is rarely volunteered at the RFQ stage. For example, clients typically attempt to disguise the

direction of their desired trades by asking for two-sided quotes instead of one-sided quotes. Our

model rationalizes that behavior as optimal.

3.4.2 Optimal policy for determining the number of dealers to contact

We can therefore restrict attention to RFQ policies of the form described by Proposition 3. For

such RFQ policies, and for all s′ ∈ {−s̄, s̄}, let qs′ denote the probability with which two dealers

are contacted (so that with complementary probability 1 − qs′ only one dealer is contacted). The

problem therefore reduces to optimizing over (q−s̄, qs̄) ∈ [0, 1]2. The problem therefore reduces to

choosing a policy for determining the number of dealers to contact by optimizing over (q−s̄, qs̄) ∈
[0, 1]2. Such a policy has an effect in two ways: (i) given a fixed belief φ, it can affect the client’s

cost, doing so if ĉ1 6= ĉ2(φ), and (ii) it can manipulate the beliefs themselves.

To characterize the client’s optimal policy, we define C(φ) as the convex closure of min{ĉ1, ĉ2(φ)}:

C(φ) = inf
{
z | (φ, z) ∈ co

(
min{ĉ1, ĉ2}

)}
,

where co
(

min{ĉ1, ĉ2}
)

denotes the convex hull of the graph of min{ĉ1, ĉ2}. By construction, C is

the largest convex function that is everywhere weakly less than both ĉ1 and ĉ2(φ). The next result

states that C(φ0) is a lower bound on the client’s procurement cost. What is more, this lower

bound is achievable. To describe an RFQ policy that achieves this bound, it is useful to define two

cutoffs: φ and φ, which are defined precisely to ensure that C(φ) = ĉ2(φ) if and only if φ ∈ [φ, φ].

Definition 1. Define φ, φ ∈ [0, 1] as follows. If ĉ2(0) ≤ ĉ1, define φ = 0; if ĉ2(1)− ĉ′2(1) ≥ ĉ1, define

φ = 1; otherwise, define it implicitly as the unique φ ∈ (0, 1) that solves ĉ2(φ) − φĉ′2(φ) = ĉ1. If

ĉ2(1) ≤ ĉ1, define φ = 1; if ĉ′2(0) + ĉ2(0) ≥ ĉ1, define φ = 0; otherwise, define it implicitly as the

unique φ ∈ (0, 1) that solves (1− φ)ĉ′2(φ) + ĉ2(φ) = ĉ1.17

Proposition 4. The following hold:

17To see that this provides a unique definition for φ, it suffices to show that ĉ2(φ)−φĉ′2(φ) is strictly decreasing on
the unit interval. Because its derivative is −φĉ′′2 (φ), the conclusion follows from the convexity of ĉ2(·). Analogously,
to see that this provides a unique definition for φ, it suffices to show that ĉ2(φ) + (1 − φ)ĉ′2(φ) is strictly increasing
on the unit interval. Because its derivative is (1− φ)ĉ′′2 (φ), the conclusion also follows from the convexity of ĉ2(·).
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(i) C(φ0) is a lower bound on the client’s cost of procurement.

(ii) φ ≤ φ.

(iii) If φ0 ∈ [φ, φ], then this lower bound is achieved by the RFQ policy defined by q−s̄ = qs̄ = 1.

(iv) If φ0 ∈ (0, φ), then this lower bound is achieved by the RFQ policy defined by q−s̄ =
φ0(1−φ)

φ(1−φ0)

and qs̄ = 1.

(v) If φ0 ∈ (φ, 1), then this lower bound is achieved by the RFQ policy defined by q−s̄ = 1 and

qs̄ = φ(1−φ0)

φ0(1−φ)
.

The intuition for this result can be understood through a tradeoff that contacting an additional

dealer entails. On the one hand, the additional dealer may intensify competition among the dealers

for the client’s business (the competition effect). The additional dealer might also be able to provide

fulfillment more efficiently (the sampling effect). On the other hand, there is a risk that dealers

who are contacted but not selected could front-run on the market (the front-running effect).

In one set of cases, the risk of front-running looms large, in which case it may be optimal for

the client to mitigate it by contacting only a single dealer. The risk of front-running is especially

large, for example, if the dealers are likely to be initially long (which makes φ large), while the

client is ex ante likely to sell (i.e., φ0 is small), and the client’s realized trading need is indeed

to sell. This is why claim (iv) of the proposition says that q−s̄ < 1 is optimal when φ0 ∈ (0, φ).

Symmetric intuition applies to claim (v). In the other cases, the risk of front-running is small

enough to endure in exchange for the countervailing benefits of an additional dealer. This is why

claim (iii) says that q−s̄ = qs̄ = 1 is optimal when φ0 ∈ [φ, φ], why claim (iv) says that qs̄ = 1 is

optimal when φ0 ∈ (0, φ), and why claim (v) says that q−s̄ = 1 is optimal when φ0 ∈ (φ, 1).

In recent years, electronic trading platforms have been introduced with the goal of reducing

search costs for many asset classes that had traditionally traded over the counter. However, a puzzle

is that many of these platforms have not been widely adopted (SIFMA Insights, 2019). Indeed,

in many classic models of over-the-counter markets, traders would benefit from interventions that

reduce or eliminate search costs. Based on this intuition, one would expect adoption of these

electronic trading platforms. We provide a potential explanation for this puzzle. Our analysis

demonstrates that it is not enough to simply eliminate search costs. So long as front-running

remains a concern, clients might desire to restrict the number of dealers that they contact, and in

particular might rationally avoid platforms that would expose their orders to a large number of

potential counterparties. In that sense, the front-running effect that emerges from our model could

be thought of as an endogenous search friction.

3.4.3 Examples

Asymmetric inventories. We illustrate with an example, which also provides a geometric in-

terpretation of Proposition 4. Suppose ψ = 0.85 and ρ = 1. Then ĉ1 and ĉ2(φ) are as depicted
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in the first panel of Figure 1.18 With this parametrization, ĉ2(φ) is a decreasing function, and it

in fact crosses ĉ1 from above. The intuition is that when φ ≈ 0, the client is likely to be selling;

at the same time, because ψ = 0.85, the dealers are likely to be long. Hence, if two dealers are

contacted, the likely outcome is that the winning dealer will have to sell on the market, while the

losing dealer will front-run, which raises the client’s ultimate cost of procurement (relative to what

it would have been if the losing dealer had not been contacted). On the other hand, when φ ≈ 1,

the client is likely to be buying (and as before, the dealers are likely to be long). Hence, if two

dealers are contacted, the likely outcome is that both would be able to internalize the client’s order,

both will bid aggressively for the order, and the client’s cost of procurement will be small (relative

to what it would have been if the losing dealer had not been contacted).

The second panel of Figure 1 depicts C(φ), which is the convexification of the lower envelope

of {ĉ1, ĉ2(φ)}. This second panel also depicts φ, which is defined to ensure that the line connecting

(0, ĉ1) to
(
φ, ĉ2(φ)

)
is tangent to c2(φ). Alternatively, this is the minimum value for which C(φ) =

ĉ2(φ). We also have φ = 1 in this case, but we do not depict this in the figure because φ plays no

role what follows.

The third panel of the figure relates to case (iii) of Proposition 4. Here, we have φ0 ∈ [φ, φ].

The optimal RFQ policy always contacts two dealers and discloses no information about the client’s

order. Under this policy, dealers’ beliefs therefore always coincide with the prior, so that the client’s

expected cost is ĉ2(φ0).

Finally, the fourth panel of the figure relates to case (iv) of Proposition 4. Here, we have

φ0 ∈ (0, φ). The optimal RFQ policy always contacts two dealers when s = s̄; and it mixes between

one and two dealers when s = −s̄. Hence, if one dealer is contacted, dealers believe s = s̄ with

probability 0. Moreover, the mixing that occurs when s = −s̄ is designed to ensure that, conditional

on two dealers being contacted, they are induced to believe that s = s̄ with probability φ. No

further information is disclosed beyond this. Under this policy, the client’s expected procurement

cost is therefore an appropriate convex combination of ĉ1 and ĉ2(φ), which is precisely what C(φ0)

captures.

Symmetric inventories. A potentially focal class of parametrizations consists of those cases in

which dealers are equally likely to be long and short (i.e., ψ = 1
2). In this case, ĉ2(·) is minimized at

φ = 1
2 and grows symmetrically in both directions to reach a maximum of ĉ2(0) = ĉ2(1) = (15+ρ)s̄2

32 .

It follows that regardless of ρ, ĉ2(·) is everywhere less than ĉ1, implying that φ = 0 and φ = 1, so

that case (iii) of Proposition 4 always applies—that is, it is always optimal for the client to contact

both dealers in these cases.

The intuition is that when dealers are equally likely to be long and short, it is always sufficiently

likely that one of the dealers will be able to internalize the client’s order—indeed, any one dealer

will be able to internalize with probability 1
2 . It is therefore sufficiently unlikely that contacting

18For s̄ ∈ [0, 2], all cost quantities scale linearly with s̄2. Thus, because the figure does not specify units, it applies
for all such s̄.
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Figure 1: Optimal RFQ Policies (ψ = 0.85 and ρ = 1)
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ĉ1
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an additional dealer would lead to front-running. With front-running rendered a sufficiently small

concern, the client unambigously benefits from inducing additional competition for her order.

3.5 Testable implications

Our model makes several predictions that can be empirically tested. One set concerns information

disclosure. If clients disclose more information about their order, then their procurement costs tend

to increase on average. Moreover, this effect is stronger when more dealers are contacted. Following

from this effect, another implication is that clients tend to avoid disclosing information when

possible (e.g., by asking for a two-sided market). As mentioned, this prediction seems consistent

with typical industry practice.

Another set of implications concerns the number of dealers contacted. Contacting more dealers

tends to raise a client’s procurement costs when dealers would have difficulty internalizing, but

lowers procurement costs when dealers can more easily internalize. Following from this effect,

another implication is that in situations where dealers tend to be long (e.g., for assets that are hard

to short), clients will tend to contact more dealers when they want to buy than when they want

to sell. Moreover, this effect is stronger when dealers become more likely to be long and for clients

who are ex ante more likely to sell.

A final set of implications concerns on-market trading. Other dealers will initially tend to trade

“with the wind” (i.e., in the same direction as the winning dealer), before reversing their direction
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to go “against the wind.” Moreover, the amount of initial “with the wind” trading increases when

more dealers are contacted and when more information is disclosed.

3.6 Policy implications

Our analysis so far has solved for how an unconstrained client would optimally behave. But in

practice, clients are sometimes constrained by existing institutions and regulations; for these cases,

our analysis has implications for when such constraints have potential to harm the client.

One application of our results is to regulations that require a minimum number of potential

counterparties to be contacted in certain situations.19 Our analysis suggests that there do exist

circumstances in which concerns about front-running loom so large that a client would prefer to

contact only a single dealer. In those cases, such mandates would be a binding constraint that

could lead to suboptimal execution.

Another application is to the design of RFQ protocols, such as those used on SEFs. Many

of these protocols require the client to reveal both the size and side of her desired transaction,

effectively mandating an information policy of full disclosure.20 Our analysis highlights that clients

might benefit if these protocols were amended to permit more flexible information policies—in fact,

our results imply that full disclosure is the worst information policy for the client.

A final application is to pre-trade transparency. To capture a population of heterogenous clients,

consider a version of the model in which the parameter φ0 is first drawn from a distribution F .

Suppose further that the client is exogenously required to use the RFQ policy that always contacts

two dealers and discloses no information; this simplifies the analysis by making the client non-

strategic and shutting down the possibility that she could use the RFQ policy to signal her realized

φ0. A regime with pre-trade transparency might be captured by assuming that φ0 is observed by the

dealers in conjunction with the RFQ. In this regime, the average client procurement cost would be∫
ĉ2(φ) dF (φ). A regime with pre-trade anonymity might be captured by assuming that φ0 is never

revealed. Letting φavg =
∫
φdF (φ), the average client procurement cost would be then ĉ2(φavg),

which is less, by the convexity of ĉ2(·).21 Our framework therefore contributes to the debate over

regulations such as Dodd-Frank and MiFID II, parts of which were designed to enhance pre-trade

transparency. To the extent that our model captures the mechanisms that are relevant for these

markets, it suggests that these regulations might actually increase transaction costs for clients.

From this perspective, pre-trade anonymity might be more desirable instead.

19Title VII of Dodd-Frank requires that for certain interest rate swaps and credit default swaps, all trades must be
executed on SEFs. And for such swaps, the CFTC requires that at least three different market participants must be
contacted for each RFQ.

20For example, this is the case for both the Bloomberg and Tradeweb SEFs, which are the top two in the index
CDS market, according to data from the SEF Tracker, published by the Futures Industry Association.

21Thus, clients are better off on average under pre-trade anonymity. Of course, we are unlikely to have φavg =
arg min ĉ2(φ), and so a subset of client types may be worse off. Note that if such client types could signal or disclose
who they are, then we might expect the anonymous regime to unravel into the transparency regime (as in, e.g.,
Grossman, 1981; Milgrom, 1981). But the version of the model we are considering here shuts down the possibility
for such signaling or disclosure.
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4 Robustness

This section investigates the extent to which our results are robust to the assumption that the

client has the ability to commit to an RFQ policy. We find that the result of Proposition 3 (on the

optimality of no disclosure) does not hinge on the client’s ability to commit: she would not want

to deviate from her commitment not to disclose further information even if she could. In contrast,

the result of Proposition 4 (on the optimal policy for determining the number of dealers to contact)

does hinge on the commitment assumption. Motivated by this observation, we then investigate

how that result would change if the client possessed only a weaker form of commitment power.

Preliminaries. To investigate these issues, it is useful to define interim analogues of ĉ1(φ) and

ĉ2(φ). Suppose an RFQ contacts one dealer. Arguments analogous to those given before allow us

to derive the client’s minimum procurement cost conditional on her type: it is 3s̄2

4 , regardless of

the client’s realized type s ∈ {−s̄, s̄} and regardless of the belief φ induced by the RFQ. Hence, we

write ĉ1,−s̄ = ĉ1,s̄ = 3s̄2

4 . Note that these interim expressions agree with the ex ante expression that

we had previously derived in that they satisfy ĉ1 = (1− φ)ĉ1,−s̄ + φĉ1,s̄.

Next, suppose an RFQ contacts two dealers and induces a belief φ. A derivation analogous

to that in the proof of Lemma 2 allows us to characterize the client’s expected procurement cost

conditional on her type, ĉ2,−s̄(φ) and ĉ2,s̄(φ). These expressions similarly agree with the ex ante

cost in that they satisfy ĉ2(φ) = (1− φ)ĉ2,−s̄(φ) + φĉ2,s̄(φ). These expressions moreover imply the

following result.

Lemma 5. ĉ′2,−s̄(φ) ≤ 0 and ĉ′2,s̄(φ) ≥ 0 on the domain φ ∈ [0, 1].

Optimality of no disclosure. The optimality of no disclosure does not depend on the client’s

ability to commit. To argue this point, we first recall that information design does not matter when

only one dealer is contacted. Hence, it suffices to focus on the case of M = 2. Given an arbitrary

RFQ policy of the form described in Proposition 3 (i.e., entailing no disclosure), let φ2 denote the

posterior beliefs about the client’s type induced by a realization of M = 2. Suppose the client’s

realized type is s = s̄. If she follows through on her commitment not to disclose, then her expected

procurement cost will be ĉ2,s̄(φ2). Alternatively, suppose she were to deviate by verifiably revealing

her type (as in, e.g., Grossman, 1981; Milgrom, 1981); in that case, her expected procurement cost

would be ĉ2,s̄(1). This is always greater, by Lemma 5. Symmetrically, the client would also not

wish to deviate from her commitment not to disclose when her realized type is s = −s̄.

Number of dealers to contact. In contrast, what may hinge on the client’s ability to commit

is her policy for determining the number of dealers to contact. To illustrate with an example, let

us consider the parametrization corresponding to the fourth panel of Figure 1: ψ = 0.85, ρ = 1,

and φ0 = 0.2. The optimal policy has the feature that under the realization s = −s̄, the client

randomizes between contacting one and two dealers—and in such a way that if two dealers are

contacted then that induces a belief φ = 0.632. However, the client would not be indifferent
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between contacting one and two dealers at this interim stage, given those beliefs. Indeed, we can

compute ĉ1,−s̄ = 0.75s̄2 and ĉ2,−s̄(φ) ≈ 0.7289s̄2. Thus, the client would wish to deviate from her

commitment to sometimes contact only a single dealer when her realized type is s = s̄.

If the client could not commit to randomization. We have previously attempted to justify

our assumption of commitment power for the client by considerations of reputation and repeated

interaction. However, one might reasonably question whether such considerations would support

commitments to policies that entail randomization in the number of contacted dealers. And indeed,

we have just shown that the client would sometimes be tempted to deviate from such commitments

to randomize. It may therefore be natural to ask what the client would do if she had only a weaker

form of commitment power.

For example, suppose the client could commit to a policy for the number of dealers to be

contacted only as a deterministic function of her type. Indeed, since deviations from such a com-

mitment are easy to detect (in contrast to deviations from commitments to particular randomization

schemes), it is much more plausible that this weaker form of commitment power could be supported

by repeated interaction.

By arguments similar to those given earlier, it again suffices to focus on RFQ policies of the form

described in Proposition 3. But we now restrict ourselves to those policies where q−s̄, qs̄ ∈ {0, 1}.
The optimal such policy can be characterized via the following counterpart to Proposition 4:

Definition 1′. Define
˜
φ, φ̃ ∈ [0, 1] as follows. If ĉ2(0) ≤ ĉ1, define

˜
φ = 0; if ĉ2(1)− ĉ′2(1) ≥ ĉ1, define

˜
φ = 1; otherwise, define it implicitly as the unique

˜
φ ∈ (0, 1) that solves φĉ2(1) + (1−φ)ĉ1 = ĉ2(φ).

If ĉ2(1) ≤ ĉ1, define φ̃ = 1; if ĉ′2(0) + ĉ2(0) ≥ ĉ1, define φ̃ = 0; otherwise, define it implicitly as the

unique φ̃ ∈ (0, 1) that solves φĉ1 + (1− φ)ĉ2(0) = ĉ2(φ).22

Proposition 4′. Under this alternative version of the model, the following hold:

(i) min{φĉ2(1) + (1 − φ)ĉ1, φĉ1 + (1 − φ)ĉ2(0), ĉ2(φ0)} is a lower bound on the client’s cost of

procurement.

(ii)
˜
φ ≤ φ̃.

(iii) If φ0 ∈ [
˜
φ, φ̃], then this lower bound is achieved by the RFQ policy defined by q−s̄ = qs̄ = 1.

(iv) If φ0 ∈ (0,
˜
φ), then this lower bound is achieved by the RFQ policy defined by q−s̄ = 0 and

qs̄ = 1.

(v) If φ0 ∈ (φ̃, 1), then this lower bound is achieved by the RFQ policy defined by q−s̄ = 1 and

qs̄ = 0.

The proof is similar to that of Proposition 4 and is therefore omitted. In addition, Appendix C

illustrates the result by revisiting the example underlying Figure 1. We had previously shown that

22To see that this provides a well-defined definition for
˜
φ, suppose that ĉ2(0) > ĉ1 and ĉ2(1) − ĉ′2(1) < ĉ1. Then

φĉ2(1) + (1− φ)ĉ1 − ĉ2(φ) is a concave function, which is negative at φ = 0, zero at φ = 1, and decreasing at φ = 1.
It therefore has a unique zero in the interval (0, 1).

24



concerns about front-running can act as a search friction, leading the client to limit the number of

dealers that she contacts. What this result demonstrates is that that conclusion does not depend

on the strong form of commitment power that we had assumed for the client. Even with the weaker

version of commitment we are considering here, the client may still optimally contact only a single

dealer.

5 Conclusion

The search for a suitable counterparty entails complex tradeoffs. Contacting more dealers increases

the chance of finding a good match, for example, a dealer who can internalize parts of the trade.

In addition, orchestrating competition reduces the market power that dealers may have. However,

in settings with price impact, there is an opposing force in the form of information leakage. By

contacting multiple dealers, the client reveals information to more parties, which may lead to front-

running, and thus larger procurement costs. In this environment, it is not obvious how a client

should procure fulfillment of her trade. Should she vary the number of dealers that she contacts

for a quote—and if so, how? Should she provide information about her trade before contracting

with a counterparty—and if so, what kind?

We develop a model to study this problem. A client, who is either a buyer or a seller of a security,

contacts either one or two dealers for a quote and conducts a procurement auction. Dealers are

initially either long or short. The client reveals her trading need to the winning dealer who may

then trade on the market in two periods. The other dealer does not observe the client’s type, yet

he may also access the market, either to provide liquidity or to front-run.

For the client, we show that secrecy about her trade is always in her best interest. In equilibrium

she therefore does not reveal whether she intends to buy or sell; or in other words, she requests

quotes for a two-sided market. Finally, we show that there is merit in varying the number of dealers

that the client contacts. Specifically, it is optimal to avoid contacting two dealers only if doing so

would be especially likely to induce front-running (given her realized trading need and her prior

over the dealers’ initial inventories).

In addition to contributing a model of this search problem, our analysis also has implications

for regulations affecting pre-trade transparency and for the design of request-for-quote protocols,

such as those used on swap execution facilities.
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A Proofs

A.1 Proof of Lemma 1

To establish Lemma 1, we in fact prove the stronger result stated in Lemma A1.

Lemma A1. In a subgame following an RFQ that contacts M = 1 dealer, the unique on-path

equilibrium behavior is as follows. Dealer A bids

(
bA−s̄, b

A
s̄

)
=



(
3s̄2

4 , 0
)

if (eA, eB) = (1, 1)(
7s̄2

16 , 0
)

if (eA, eB) = (1,−1)(
0, 7s̄2

16

)
if (eA, eB) = (−1, 1)(

0, 3s̄2

4

)
if (eA, eB) = (−1,−1)

If dealer A wins, the on-market trades are

(xA1 , x
A
2 , x

B
2 ) =



(0, 0, 0) if (s, eA, eB) = (s̄, 1, 1)

(− s̄
2 ,−

s̄
2 , 0) if (s, eA, eB) = (−s̄, 1, 1)

(0, 0, 0) if (s, eA, eB) = (s̄, 1,−1)

(− s̄
4 ,−

3s̄
4 ,

s̄
2) if (s, eA, eB) = (−s̄, 1,−1)

( s̄4 ,
3s̄
4 ,−

s̄
2) if (s, eA, eB) = (s̄,−1, 1)

(0, 0, 0) if (s, eA, eB) = (−s̄,−1, 1)

( s̄2 ,
s̄
2 , 0) if (s, eA, eB) = (s̄,−1,−1)

(0, 0, 0) if (s, eA, eB) = (−s̄,−1,−1)

Lemma 1 follows from Lemma A1 for reasons discussed in the main text. To ensure execution

with probability one, the client’s reserve must be at least the dealer’s bid in the worst case. If the

client wishes to sell, the worst case is (eA, eB) = (1, 1), where bA−s̄ = 3s̄2

4 , according to Lemma A1.

Symmetrically, if the client wishes to buy, the worst case is (eA, eB) = (−1,−1), where bAs̄ = 3s̄2

4 .

Therefore, it follows that the expected procurement cost resulting from an RFQ that contacts one

dealer, induces a belief that φ is the probability of s = s̄, and guarantees execution with probability

one results is at least

ĉ1 = φ
3s̄2

4
+ (1− φ)

3s̄2

4
=

3s̄2

4
,

as claimed by Lemma 1. Moreover, the RFQ that uses reserve prices b̄ = (3s̄2

4 ,
3s̄2

4 ) both ensures

execution with probability one and achieves the cost ĉ1.

Proof of Lemma A1. Because both dealers observe the entire vector (eA, eB), the four possible

realizations of that vector can be analyzed separately. Below, we analyze the cases of (1, 1) and

(1,−1); the remaining cases can be handled symmetrically.
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Case 1: (eA, eB) = (1, 1). Here is a full specification of an equilibrium for this case. Dealer A bids(
bA−s̄, b

A
s̄

)
=
(

3s̄2

4 , 0
)

. Henceforth, suppose that dealer A wins. If s = s̄, dealer A sets xA1 = 0 and

xA2 =


−xA1

3 if 0 ≤ xA1 ≤ s̄

−xA1
2 if max{−s̄, 2s̄− 4} ≤ xA1 < 0

s̄− 2− xA1 if − s̄ ≤ xA1 ≤ 2s̄− 4

(3)

If s = −s̄, dealer A sets xA1 = − s̄
2 and

xA2 =
{
−s̄− xA1 if − s̄ ≤ xA1 ≤ s̄ (4)

Dealer B sets

xB2 =

−
xA1
3 if 0 ≤ xA1 ≤ s̄

0 if − s̄ ≤ xA1 < 0
(5)

Dealers’ beliefs prior to bidding are µA0 = µB0 = φ. Dealer B’s beliefs prior to second-period trading

are

µB2 =

1 if 0 ≤ xA1 ≤ s̄

0 if − s̄ ≤ xA1 < 0

We claim that the specified strategies and beliefs satisfy the solution concept described in Section 3.1

and moreover that anything else also satisfying the solution concept must feature the same on-path

behavior. The argument consists of three parts.

Part (i): We check the consistency of dealer B’s beliefs. Given the specified strategy for dealer A,

Bayes’ rule requires only that

µB2 =

1 if xA1 = 0

0 if xA1 = − s̄
2

This is indeed consistent with the specified beliefs.

Part (ii): Given the specified beliefs, we check that the solution concept uniquely pins down the

specified strategies. We proceed by backward induction:

• Period-2 reaction functions. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . For s ∈

{−s̄, s̄}, dealer A best responds with xA2 =
[
−xA1 +xB2

2

]s−xA1
s−2−xA1

. Dealer B’s trading costs are

(xA1 + xA2 + xB2 )xB2 . Dealer B best responds with xB2 =
[
−xA1 +xA2

2

]0

−2
.

• Dealer B’s period-2 action. If 0 ≤ xA1 ≤ s̄ so that µB2 = 1, then xB2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB2

2

]s̄−xA1
s̄−2−xA1

and xB2 =
[
−xA1 +xA2

2

]0

−2
, so that we indeed have xB2 =

−xA1
3 . If −s̄ ≤ xA1 < 0 so that µB2 = 0, then xB2 is pinned down by the intersection of xA2 =
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[
−xA1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and xB2 =
[
−xA1 +xA2

2

]0

−2
, so that we indeed have xB2 = 0. Together, these two

cases verify (5).

• Dealer A’s period-2 action. If s = s̄, then xA2 is pinned down by the intersection of xA2 =[
−xA1 +xB2

2

]s̄−xA1
s̄−2−xA1

and (5), which verifies (3).

If s = −s̄, then xA2 is pinned down by the intersection of xA2 =
[
−xA1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and (5), which

verifies (4).

• Dealer A’s period-1 action. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . If s = s̄,

then we can plug in (3) and (5) to express dealer A’s trading costs as a function of xA1 :
xA1 x

A
1 − (

xA1
3 )2 if 0 ≤ xA1 ≤ s̄

xA1 x
A
1 − (

xA1
2 )2 if max{s, 2s̄− 4} ≤ xA1 < 0

xA1 x
A
1 + (s̄− 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 < 2s̄− 4

which is indeed minimized by xA1 = 0.

Alternatively, if s = −s̄, then we can plug in (4) and (5) to express dealer A’s trading costs as a

function of xA1 : xA1 xA1 + (−s̄− xA1
3 )(−s̄− xA1 ) if 0 ≤ xA1 ≤ s̄

xA1 x
A
1 + (−s̄)(−s̄− xA1 ) if − s̄ ≤ xA1 < 0

which is indeed minimized by xA1 = − s̄
2 .

• Dealer A’s bid. Plugging in the trading behavior derived above, we have the following. If s = s̄,

then dealer A’s continuation utility is c if he wins and 0 if he loses. If s = −s̄, then dealer A’s

continuation utility is c− 3
4 s̄

2 if he wins and 0 if he loses. Based on the solution concept described

in Section 3.1, dealer A must therefore bid
(
bA−s̄, b

A
s̄

)
=
(

3
4 s̄

2, 0
)
.

Part (iii): We check that the equilibrium specified above satisfies the restrictions on beliefs de-

scribed in Section 3.1. And we also show that any equilibrium satisfying those conditions must

feature on-path behavior coinciding with that of the equilibrium specified above. Let µ̃B2 be can-

didate beliefs. One requirement is that µ̃B2 must have the step-function structure described in the

text.23 We then partition the possible µ̃B2 into three cases:

• Suppose, by way of contradiction, that we have an equilibrium with beliefs such that µ̃B2 (0) =

0. By the step-function structure of µ̃B2 and because beliefs must be correct on path, this

means that on path, dealer A sets xA1 > 0 when s = s̄. Arguments similar to those given above

imply that we would subsequently have (xA2 , x
B
2 ) = (−xA1

3 ,−
xA1
3 ), leading to total trading

23That is, (i) for all x ∈ [−s̄, s̄], µ̃B2 (x) ∈ {0, 1}, and (ii) for all x′ < x′′, µ̃B2 (x′) = 1 =⇒ µ̃B2 (x′′) = 1 and
µ̃B2 (x′′) = 0 =⇒ µ̃B2 (x′) = 0.
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costs for dealer A of (xA1 )2 − (
xA1
3 )2 = 8

9(xA1 )2. On the other hand, suppose that dealer A

deviated to set xA1 = 0 when s = s̄. Arguments similar to those given above imply that we

would subsequently have (xA2 , x
B
2 ) = (0, 0), leading to trading costs of 0. This constitutes a

profitable deviation, contradicting the putative equilibrium.

• Suppose, by way of contradiction, that we have an equilibrium with beliefs such that µ̃B2 (− s̄
2) =

1. By the step-function structure of µ̃B2 and because beliefs must be correct on path, this

means that on path, dealer A sets xA1 < − s̄
2 when s = −s̄. Arguments similar to those given

above imply that we would subsequently have (xA2 , x
B
2 ) = (−s̄ − xA1 , 0), leading to trading

costs for dealer A of (xA1 )2 + (−s̄)(−s̄− xA1 ) = 3
4 s̄

2 + ( s̄2 + xA1 )2. On the other hand, suppose

that dealer A deviated to set xA1 = − s̄
2 when s = s̄. Arguments similar to those given above

imply that we would subsequently have (xA2 , x
B
2 ) = (− s̄

2 , 0), leading to trading costs of 3
4 s̄

2.

This constitutes a profitable deviation, contradicting the putative equilibrium.

• Finally, suppose we have an equilibrium with beliefs such that both µ̃B2 (0) = 1 and µ̃B2 (− s̄
2) =

0. Using arguments similar to those given above, we can show that any such equilibrium

induces the same on-path behavior as the equilibrium specified above. In particular, dealer A’s

equilibrium trading costs are as above: CA∗ (s̄) = 0 and CA∗ (−s̄) = 3
4 s̄

2. We can also use

arguments similar to those given above to compute

CA(s̄, xA1 , 1) =


(xA1 )2 − (

xA1
3 )2 if 0 ≤ xA1 ≤ s̄

(xA1 )2 − (
xA1
2 )2 if 2s̄− 4 ≤ xA1 ≤ 0

(xA1 )2 + (s̄− 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 ≤ 2s̄− 4

CA(s̄, xA1 , 0) =
{

(xA1 )2 + (−s̄)(−s̄− xA1 ) if − s̄ ≤ xA1 ≤ s̄

And so we conclude that for all xA1 ∈ [−s̄, s̄], CA(s̄, xA1 , 1) ≥ 0 = CA∗ (s̄) and CA(−s̄, xA1 , 0) ≥
3
4 s̄

2 = CA∗ (−s̄). Hence, the intuitive criterion does not rule out any such equilibrium (e.g.,

the equilibrium specified above).

Case 2: (eA, eB) = (1,−1). Here is a full specification of an WPBE for this case. Dealer A bids(
bA−s̄, b

A
s̄

)
=
(

7s̄2

16 , 0
)

. Henceforth, suppose that dealer A wins. If s = s̄, dealer A sets xA1 = 0 and

xA2 =



−xA1
2 if 0 ≤ xA1 ≤ s̄

−xA1
3 if max{3s̄

2 − 3,− s̄
6} ≤ x

A
1 < 0

s̄− 2− xA1 if − s̄
6 ≤ x

A
1 < 3s̄

2 − 3

−xA1
2 −

s̄
4 if max{−s̄, 5s̄

2 − 4} ≤ xA1 < − s̄
6

s̄− 2− xA1 if − s̄ ≤ xA1 < min{5s̄
2 − 4,− s̄

6}

(6)
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If s = −s̄, dealer A sets xA1 = − s̄
4 and

xA2 =
{
−s̄− xA1 if − s̄ ≤ xA1 ≤ s̄ (7)

Dealer B sets

xB2 =



0 if xA1 ≥ 0

−xA1
3 if max{3s̄

2 − 3,− s̄
6} ≤ x

A
1 < 0

− s̄
2 + 1 if − s̄

6 ≤ x
A
1 < 3s̄

2 − 3

s̄
2 if − s̄ ≤ xA1 < − s̄

6

(8)

Dealers’ beliefs prior to bidding are µA0 = µB0 = φ. Dealer B’s beliefs prior to second-period trading

are

µB2 =

1 if − s̄
6 ≤ x

A
1 ≤ s̄

0 if − s̄ ≤ xA1 < − s̄
6

We claim that the specified strategies and beliefs satisfy the solution concept described in Section 3.1

and moreover that anything else also satisfying the solution concept must feature the same on-path

behavior. The argument consists of three parts.

Part (i): We check the consistency of dealer B’s beliefs. Given the specified strategy for dealer A,

Bayes’ rule requires only that

µB2 =

1 if xA1 = 0

0 if xA1 = − s̄
4

This is indeed consistent with the specified beliefs.

Part (ii): Given the specified beliefs, we check that the solution concept uniquely pins down the

specified strategies. We proceed by backward induction:

• Period-2 reaction functions. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . For s ∈

{−s̄, s̄}, dealer A best responds with xA2 =
[
−xA1 +xB2

2

]s−xA1
s−2−xA1

. Dealer B’s trading costs are

(xA1 + xA2 + xB2 )xB2 . Dealer B best responds with xB2 =
[
−xA1 +xA2

2

]2

0
.

• Dealer B’s period-2 action. If − s̄
6 ≤ xA1 ≤ s̄ so that µB2 = 1, then xB2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB2

2

]s̄−xA1
s̄−2−xA1

and xB2 =
[
−xA1 +xA2

2

]2

0
, so that we indeed have

xB2 =


0 if xA1 ≥ 0

−xA1
3 if max{3s̄

2 − 3,− s̄
6} ≤ x

A
1 < 0

− s̄
2 + 1 if − s̄

6 ≤ x
A
1 < 3s̄

2 − 3

If −s̄ ≤ xA1 < − s̄
6 so that µB2 = 0, then xB2 is pinned down by the intersection of xA2 =
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[
−xA1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and xB2 =
[
−xA1 +xA2

2

]2

0
, so that we indeed have xB2 = s̄

2 . Together, these two

cases verify (8).

• Dealer A’s period-2 action. If s = s̄, then xA2 is pinned down by the intersection of xA2 =[
−xA1 +xB2

2

]s̄−xA1
s̄−2−xA1

and (8), which verifies (6).

If s = −s̄, then xA2 is pinned down by the intersection of xA2 =
[
−xA1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and (8), which

verifies (7).

• Dealer A’s period-1 action. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . If s = s̄,

then we can plug in (6) and (8) to express dealer A’s trading costs as a function of xA1 :

xA1 x
A
1 − (

xA1
2 )2 if 0 ≤ xA1 ≤ s̄

xA1 x
A
1 − (

xA1
3 )2 if max{3s̄

2 − 3,− s̄
6} ≤ x

A
1 < 0

xA1 x
A
1 + ( s̄2 − 1)(s̄− 2− xA1 ) if − s̄

6 ≤ x
A
1 < 3s̄

2 − 3

xA1 x
A
1 − (

xA1
2 + s̄

4)2 if max{−s̄, 5s̄
2 − 4} ≤ xA1 < − s̄

6

xA1 x
A
1 + (3s̄

2 − 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 < min{5s̄
2 − 4,− s̄

6}

which is indeed minimized by xA1 = 0.

Alternatively, if s = −s̄, then we can plug in (7) and (8) to express dealer A’s trading costs as a

function of xA1 : 

xA1 x
A
1 + (−s̄)(−s̄− xA1 ) if xA1 ≥ 0

xA1 x
A
1 + (−s̄− xA1

3 )(−s̄− xA1 ) if max{3s̄
2 − 3,− s̄

6} ≤ x
A
1 < 0

xA1 x
A
1 + (−3s̄

2 + 1)(−s̄− xA1 ) if − s̄
6 ≤ x

A
1 < 3s̄

2 − 3

xA1 x
A
1 + (− s̄

2)(−s̄− xA1 ) if − s̄ ≤ xA1 < − s̄
6

which is indeed minimized by xA1 = − s̄
4 .

• Dealer A’s bid. Plugging in the trading behavior derived above, we have the following. If s = s̄,

then dealer A’s continuation utility is c if he wins and 0 if he loses. If s = −s̄, then dealer A’s

continuation utility is c− 7s̄2

16 if he wins and 0 if he loses. Based on the solution concept described

in Section 3.1, dealer A must therefore bid
(
bA−s̄, b

A
s̄

)
=
(

7s̄2

16 , 0
)

.

Part (iii): We check that the equilibrium specified above satisfies the restrictions on beliefs de-

scribed in Section 3.1. And we also show that any equilibrium satisfying those conditions must

feature on-path behavior coinciding with that of the equilibrium specified above. Let µ̃B2 be can-

didate beliefs. One requirement is that µ̃B2 must have the step-function structure described in the

text. We then partition the possible µ̃B2 into three cases:
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• Suppose, by way of contradiction, that we have an equilibrium with beliefs such that µ̃B2 (− s̄
6 +

ε) = 0 for some ε > 0. By the step-function structure of µ̃B2 and because beliefs must be

correct on path, we can choose ε > 0 arbitrarily small (and in particular less than 2s̄
3 ). The

step-function structure of µ̃B2 , together with the fact that beliefs must be correct on path,

also implies that on path, dealer A sets xA1 > − s̄
6 + ε when s = s̄. Arguments similar to those

given above imply that we would subsequently have

(xA2 , x
B
2 ) =

(−xA1
2 , 0) if 0 ≤ xA1 ≤ s̄

(−xA1
3 ,−

xA1
3 ) if − s̄

6 + ε < xA1 ≤ 0

leading to total trading costs for dealer A of3
4(xA1 )2 if 0 ≤ xA1 ≤ s̄
8
9(xA1 )2 if − s̄

6 + ε < xA1 ≤ 0

which are bounded below by 0. On the other hand, suppose that dealer A deviated to set

xA1 = − s̄
6 + ε when s = s̄. Arguments similar to those given above imply that we would

subsequently have (xA2 , x
B
2 ) = (− s̄

6 −
ε
2 ,

s̄
2), leading to trading costs of − ε

4(2s̄− 3ε) < 0. This

constitutes a profitable deviation, contradicting the putative equilibrium.

• Suppose, by way of contradiction, that we have an equilibrium with beliefs such that µ̃B2 (− s̄
4) =

1. By the step-function structure of µ̃B2 and because beliefs must be correct on path, this

means that on path, dealer A sets xA1 < − s̄
4 when s = −s̄. Arguments similar to those

given above imply that we would subsequently have xA2 = −s̄ − xA1 and xB2 = s̄
2 , leading to

trading costs for dealer A of CA∗ (−s̄) = (xA1 )2 + s̄
2(s̄+ xA1 ) = 7

16 s̄
2 + ( s̄4 + xA1 )2. On the other

hand, suppose that dealer A deviated to set xA1 = − s̄
4 when s = −s̄ and that—contrary to

the putative beliefs—this were to induce a belief µB2 = 0. Arguments similar to those given

above imply that we would subsequently have (xA2 , x
B
2 ) = (−3s̄

4 ,
s̄
2), leading to trading costs

of CA(−s̄,− s̄
4 , 0) = 7

16 s̄
2 < CA∗ (−s̄).

Given that µ̃B2 (− s̄
4) = 1, we can use arguments similar to those given above to show that on-

path behavior coincides with that in the equilibrium specified above when s = s̄. In particular,

dealer A’s equilibrium trading costs are as above: CA∗ (s̄) = 0. On the other hand, suppose

that dealer A deviated to set xA1 = − s̄
4 when s = s̄ and that this were to induce a belief

µB2 ∈ [0, 1]. Arguments similar to those given above imply that we would subsequently have

(xA2 , x
B
2 ) =

(
(3µB2 −2)s̄

4(4−µB2 )
,

(8−7µB2 )s̄

4(4−µB2 )

)
, leading to trading costs of CA(s̄,− s̄

4 , µ
B
2 ) =

(3−2µB2 )(1+µB2 )s̄2

4(4−µB2 )2 .

This is minimized at µB2 = 0, and hence minµB2 ∈[0,1]C
A(s̄,− s̄

4 , µ
B
2 ) = 3s̄2

64 > CA∗ (s̄). The

putative equilibrium therefore fails our intuitive criterion test.

• Finally, suppose we have an equilibrium with beliefs such that both µ̃B2 (− s̄
6 + ε) = 1 for all

ε > 0 and µ̃B2 (− s̄
4) = 0. Using arguments similar to those given above, we can show that any

such equilibrium induces the same on-path behavior as the equilibrium specified above. In
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particular, dealer A’s equilibrium trading costs are as above: CA∗ (s̄) = 0 and CA∗ (−s̄) = 7
16 s̄

2.

We can also use arguments similar to those given above to compute

CA(s̄, xA1 , 1) =


(xA1 )2 − (

xA1
2 )2 if 0 ≤ xA1 ≤ s̄

(xA1 )2 − (
xA1
3 )2 if 3s̄

2 − 3 ≤ xA1 ≤ 0

(xA1 )2 + ( s̄2 − 1)(s̄− 2− xA1 ) if − s̄ ≤ xA1 ≤ 3s̄
2 − 3

CA(s̄, xA1 , 0) =
{

(xA1 )2 + (− s̄
2)(−s̄− xA1 ) if − s̄ ≤ xA1 ≤ s̄

And so we conclude that for all xA1 ∈ [−s̄, s̄], CA(s̄, xA1 , 1) ≥ 0 = CA∗ (s̄) and CA(−s̄, xA1 , 0) ≥
7
16 s̄

2 = CA∗ (−s̄). Hence, the intuitive criterion does not rule out any such equilibrium (e.g.,

the equilibrium specified above).

This completes the proof.

A.2 Proof of Lemma 2

To establish Lemma 2, we in fact prove the stronger result stated in Lemma A2.

Lemma A2. In a subgame following an RFQ that contacts M = 2 dealers, induces dealer beliefs φ,

and entails reserve prices b̄−s̄ ≥ (2304−560φ−157φ2)s̄2

4(24−φ)2 and b̄s̄ ≥ (1587+874φ−157φ2)s̄2

4(23+φ)2 , the unique on-path

equilibrium behavior is as follows. Dealer A bids

(
bA−s̄, b

A
s̄

)
=



(
(2304−560φ−157φ2)s̄2

4(24−φ)2 ,−207(1−φ)2s̄2

4(24−φ)2

)
if (eA, eB) = (1, 1)(

7s̄2

16 ,
s̄2

4

)
if (eA, eB) = (1,−1)(

s̄2

4 ,
7s̄2

16

)
if (eA, eB) = (−1, 1)(

− 207φ2s̄2

4(23+φ)2 ,
(1587+874φ−157φ2)s̄2

4(23+φ)2

)
if (eA, eB) = (−1,−1)

If dealer A wins, the on-market trades are

(xA1 , x
A
2 , x

B
1 , x

B
2 ) =



(
7(1−φ)s̄
2(24−φ) ,

3(1−φ)s̄
2(24−φ) ,−

8(1−φ)s̄
24−φ , 3(1−φ)s̄

2(24−φ)

)
if (s, eA, eB) = (s̄, 1, 1)(

− (16+7φ)s̄
2(24−φ) ,−

(32−9φ)s̄
2(24−φ) ,−

8(1−φ)s̄
24−φ , 8(1−φ)s̄

24−φ

)
if (s, eA, eB) = (−s̄, 1, 1)

(0, 0, 0, 0) if (s, eA, eB) = (s̄, 1,−1)(
− s̄

4 ,−
3s̄
4 , 0,

s̄
2

)
if (s, eA, eB) = (−s̄, 1,−1)(

s̄
4 ,

3s̄
4 , 0,−

s̄
2

)
if (s, eA, eB) = (s̄,−1, 1)

(0, 0, 0, 0) if (s, eA, eB) = (−s̄,−1, 1)(
(23−7φ)s̄
2(23+φ) ,

(23+9φ)s̄
2(23+φ) ,

8φs̄
23+φ ,−

8φs̄
23+φ

)
if (s, eA, eB) = (s̄,−1,−1)(

− 7φs̄
2(23+φ) ,−

3φs̄
2(23+φ) ,

8φs̄
23+φ ,−

3φs̄
2(23+φ)

)
if (s, eA, eB) = (−s̄,−1,−1)

Dealer B’s bids and the on-market trades if dealer B wins are specified symmetrically.
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Lemma 2 follows from Lemma A2 for reasons discussed in the main text. For an RFQ that

contacts two dealers to ensure execution with probability one, the client’s reserve must be high

enough to ensure that it never sets the price. Mathematically, this means b̄−s̄ ≥ (2304−560φ−157φ2)s̄2

4(24−φ)2

and b̄s̄ ≥ (1587+874φ−157φ2)s̄2

4(23+φ)2 , where φ denotes the probability of s = s̄ induced by the RFQ. These

inequalities are in particular satisfied by b̄ = (s̄2, s̄2).

It therefore follows from Lemma A2 that the expected cost of procurement achieved by an

RFQ that contacts M = 2 dealers, induces a belief that φ is the probability of s = s̄, and ensures

execution with probability one can be computed as

ĉ2(φ) ≡ (1− φ)(2304− 767φ+ 50φ2)s̄2

4(24− φ)2
ψ[1− (1− ψ)(1− ρ)]

+
φ(1587 + 667φ+ 50φ2)s̄2

4(23 + φ)2
(1− ψ)[1− ψ(1− ρ)] +

7s̄2

16
2ψ(1− ψ)(1− ρ).

(9)

Indeed, with probability φψ[1 − (1 − ψ)(1 − ρ)], we have (s, eA, eB) = (s̄, 1, 1), and the auction’s

clearing price is −207(1−φ)2s̄2

4(24−φ)2 . With probability (1− φ)ψ[1− (1− ψ)(1− ρ)], we have (s, eA, eB) =

(−s̄, 1, 1), and the auction’s clearing price is (2304−560φ−157φ2)s̄2

4(24−φ)2 . With probability φ(1 − ψ)[1 −

ψ(1− ρ)], we have (s, eA, eB) = (s̄,−1,−1), and the auction’s clearing price is (1587+874φ−157φ2)s̄2

4(23+φ)2 .

With probability (1− φ)(1− ψ)[1− ψ(1− ρ)], we have (s, eA, eB) = (s̄,−1,−1), and the auction’s

clearing price is − 207φ2s̄2

4(23+φ)2 . With the remaining probability 2ψ(1−ψ)(1−ρ), the auction’s clearing

price is max{7s̄2

16 ,
s̄2

4 } = 7s̄2

16 . It follows that the expected procurement cost is as in (9).

The claims made by Lemma 2 about ĉ2(φ) follow readily from (9). Indeed, we can see that it

is differentiable and we can moreover compute

ĉ′′2(φ) =
529(624− 95φ)s̄2

2(24− φ)4
ψ[1− (1− ψ)(1− ρ)] +

529(529 + 95φ)s̄2

2(23 + φ)4
(1− ψ)[1− ψ(1− ρ)],

which is positive on the domain φ ∈ [0, 1]. We can also compute ĉ2(1
2) = 1933s̄2

4418 ψ[1 − (1 − ψ)(1 −
ρ)] + 1933s̄2

4418 (1− ψ)[1− ψ(1− ρ)] + 7s̄2

16 2ψ(1− ψ)(1− ρ) < 3s̄2

4 = ĉ1.

Proof of Lemma A2. Because both dealers observe the entire vector (eA, eB), the four possible

realizations of that vector can be analyzed separately. Below, we analyze the cases of (1, 1) and

(1,−1); the remaining cases can be handled symmetrically (i.e., by flipping signs and exchanging

the roles of φ and 1 − φ). Within each case, we focus on the event in which dealer A wins; the

events in which dealer B wins can be handled symmetrically.

Case 1: (eA, eB) = (1, 1). Here is a full specification of an WPBE for this case. Dealer A bids(
bA−s̄, b

A
s̄

)
=
(

(2304−560φ−157φ2)s̄2

4(24−φ)2 ,−207(1−φ)2s̄2

4(24−φ)2

)
. Henceforth, suppose that dealer A wins. If s = s̄,
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dealer A sets xA1 = 7(1−φ)s̄
2(24−φ) and

xA2 =



−xA1
2 if 0 ≤ xA1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

−xA1 +xB1
3 if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

−xA1
2 if max{−s̄, 2s̄− 4} ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

s̄− 2− xA1 if − s̄ ≤ xA1 < 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄

(10)

If s = −s̄, dealer A sets xA1 = − (16+7φ)s̄
2(24−φ) and

xA2 =
{
−s̄− xA1 if − s̄ ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤ s̄ (11)

Dealer B sets xB1 = −8(1−φ)s̄
24−φ and

xB2 =


−xB1 if 0 ≤ xA1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

−xA1 +xB1
3 if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

−xB1 if − s̄ ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

(12)

Dealers’ beliefs prior to bidding are µA0 = µB0 = φ. Dealer B’s beliefs prior to first-period trading

are µB1 = φ. Dealer B’s beliefs prior to second-period trading are

µB2 =

1 if 0 ≤ xA1 ≤ s̄

0 if − s̄ ≤ xA1 < 0

We claim that the specified strategies and beliefs satisfy the solution concept described in Section 3.1

and moreover that anything else also satisfying the solution concept must feature the same on-path

behavior. The argument consists of three parts.

Part (i): We check the consistency of dealer B’s beliefs. First, consider dealer B’s beliefs (condi-

tional on losing) at the point just after having observed the auction’s outcome. Given symmetry

of the specified bidding strategies and the fact that the auction’s tie-breaking rule does not depend

on the realized s, the auction’s outcome is uninformative so that posterior beliefs must equal the

prior. Thus, we indeed have µB1 = φ. Second, consider dealer B’s beliefs (conditional on losing) at

the point just after having observed the first trading period’s outcome. Given the specified strategy

for dealer A, Bayes’ rule requires only that

µB2 =

1 if xA1 = 7(1−φ)s̄
2(24−φ)

0 if xA1 = − (16+7φ)s̄
2(24−φ)

This is indeed consistent with the specified beliefs.
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Part (ii): Given the specified beliefs, we check that the solution concept uniquely pins down the

specified strategies. We proceed by backward induction:

• Period-2 reaction functions. Dealer A’s trading costs are (xA1 +xB1 )xA1 + (xA1 +xB1 +xA2 +xB2 )xA2 .

For s ∈ {−s̄, s̄}, dealer A best responds with xA2 =
[
−xA1 +xB1 +xB2

2

]s−xA1
s−2−xA1

. Dealer B’s trading costs

are (xA1 +xB1 )xB1 +(xA1 +xB1 +xA2 +xB2 )xB2 . Dealer B best responds with xB2 =
[
−xA1 +xB1 +xA2

2

]−xB1
−2−xB1

.

• Dealer B’s period-2 action. If 0 ≤ xA1 ≤ s̄ so that µB2 = 1, then xB2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB1 +xB2

2

]s̄−xA1
s̄−2−xA1

and xB2 =
[
−xA1 +xB1 +xA2

2

]−xB1
−2−xB1

, so that we indeed

have:

xB2 =

−xB1 if 0 ≤ xA1 ≤ s̄ and
xA1
2 ≤ x

B
1 ≤ s̄

−xA1 +xB1
3 if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

If −s̄ ≤ xA1 < 0 so that µB2 = 0, then xB2 is pinned down by the intersection of xA2 =[
−xA1 +xB1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and xB2 =
[
−xA1 +xB1 +xA2

2

]−xB1
−2−xB1

, so that we indeed have:

xB2 =
{
−xB1 if − s̄ ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

Together, these two cases verify (12).

• Dealer A’s period-2 action. If s = s̄, then xA2 is pinned down by the intersection of xA2 =[
−xA1 +xB1 +xB2

2

]s̄−xA1
s̄−2−xA1

and (12), which verifies (10). If s = −s̄, then xA2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and (12), which verifies (11).

• Period-1 actions. Dealer A’s trading costs are (xA1 + xB1 )xA1 + (xA1 + xB1 + xA2 + xB2 )xA2 . If s = s̄,

then we can plug in (10) and (12) to express dealer A’s trading costs as a function of (xA1 , x
B
1 ):



(xA1 + xB1 )xA1 − (
xA1
2 )2 if 0 ≤ xA1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

(xA1 + xB1 )xA1 − (
xA1 +xB1

3 )2 if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤
xA1
2

(xA1 + xB1 )xA1 − (
xA1
2 )2 if max{−s̄, 2s̄− 4} ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

(xA1 + xB1 )xA1 + (s̄− 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 < 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄

Optimizing, we can express xA1 (s̄) in terms of xB1 :

xA1 (s̄) =


−7xB1

16 if − s̄ ≤ xB1 ≤ 0

−2xB1
3 if 0 ≤ xB1 ≤ min{−3s̄+ 6, s̄}

s̄
2 − 1− xB1

2 if − 3s̄+ 6 ≤ xB1 ≤ s̄

(13)
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Alternatively, if s = −s̄, then we can plug in (11) and (12) to express dealer A’s trading costs as

a function of (xA1 , x
B
1 ):

(xA1 + xB1 )xA1 + (−s̄)(−s̄− xA1 ) if 0 ≤ xA1 ≤ s̄ and
xA1
2 ≤ x

B
1 ≤ s̄

(xA1 + xB1 )xA1 + (−s̄− xA1
3 +

2xB1
3 )(−s̄− xA1 ) if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

(xA1 + xB1 )xA1 + (−s̄)(−s̄− xA1 ) if − s̄ ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

Optimizing, we can express xA1 (−s̄) in terms of xB1 :

xA1 (−s̄) =
{
− s̄

2 −
xB1
2 if − s̄ ≤ xB1 ≤ s̄ (14)

The derivation of dealer B’s equilibrium period-1 action consists of two parts. First, we now

show that there is a unique equilibrium in which xB1 ∈ [−s̄, 0]. Suppose s = s̄. If xA1 is a best

response to x̂B1 ∈ [−s̄, 0], then by (13), we have xA1 = −7x̂B1
16 , so that xA1 ∈ [0, 7s̄

16 ]. Dealer B’s

trading costs are (xA1 + xB1 )xB1 + (xA1 + xB1 + xA2 + xB2 )xB2 . We can then plug in (10) and (12) to

express dealer B’s trading costs as a function of (xB1 , x̂
B
1 ):

CBs̄ (xB1 , x̂
B
1 ) =

(−7x̂B1
16 + xB1 )xB1 + (−7x̂B1

32 )(−xB1 ) if − 7x̂B1
32 ≤ x

B
1 ≤ s̄

(−7x̂B1
16 + xB1 )xB1 − (−7x̂B1

48 +
xB1
3 )2 if − s̄ ≤ xB1 ≤ −

7x̂B1
32

Suppose s = −s̄. If xA1 is a best response to x̂B1 ∈ [−s̄, 0], then by (14), we have xA1 = − s̄
2 −

x̂B1
2 ,

so that xA1 ∈ [− s̄
2 , 0]. We can then plug in (11) and (12) to express dealer B’s trading costs as a

function of (xB1 , x̂
B
1 ):

CB−s̄(x
B
1 , x̂

B
1 ) =

{
(− s̄

2 −
x̂B1
2 + xB1 )xB1 + (−s̄)(−xB1 ) if − s̄ ≤ xB1 ≤ s̄

Because φ represents the probability of s̄, dealer B’s expected trading costs as a function of

(xB1 , x̂
B
1 ) are

φCBs̄ (xB1 , x̂
B
1 ) + (1− φ)CB−s̄(x

B
1 , x̂

B
1 ),

which is minimized by xB1 = −9(1−φ)s̄
4(9−φ) +

(72−23φ)x̂B1
32(9−φ) . Equilibrium occurs when this optimal value

of xB1 coincides with x̂B1 , which indeed occurs at xB1 = −8(1−φ)s̄
24−φ .

Second, we show that there is no equilibrium in which xB1 > 0. Suppose s = s̄. Let x̂B1 > 0

and let xA1 (x̂B1 ) be the best response from (13). We can then plug in (10) and (12) to express

dealer B’s trading costs against xA1 (x̂B1 ) from setting xB1 = x̂B1 :

CBs̄ (x̂B1 , x̂
B
1 ) =

2
3(x̂B1 )2 if 0 ≤ x̂B1 ≤ min{−3s̄+ 6, s̄}
(−s̄+2+x̂B1 )x̂B1

2 if − 3s̄+ 6 ≤ x̂B1 ≤ s̄

Similarly, suppose s = −s̄. Let x̂B1 > 0 and let xA1 (x̂B1 ) be the best response from (14). We
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can then plug in (11) and (12) to express dealer B’s trading costs against xA1 (x̂B1 ) from setting

xB1 = x̂B1 :

CB−s̄(x̂
B
1 , x̂

B
1 ) =

{
(s̄+x̂B1 )x̂B1

2 if 0 ≤ x̂B1 ≤ s̄

Because φ represents the probability of s̄, dealer B’s expected trading costs against xA1 (x̂B1 ) from

setting xB1 = x̂B1 would be φCBs̄ (x̂B1 , x̂
B
1 ) + (1−φ)CB−s̄(x̂

B
1 , x̂

B
1 ), which by the above expressions is

strictly positive. But this cannot correspond to an equilibrium because dealer B could do strictly

better against such trading behavior by dealer A: setting xB1 = xB2 = 0 guarantees trading costs

of zero.

In conclusion, we have derived dealer B’s period-1 action as xB1 = −8(1−φ)s̄
24−φ . Plugging this

into (13) and (14), we indeed obtain xA1 (s̄) = 7(1−φ)s̄
2(24−φ) and xA1 (−s̄) = − (16+7φ)s̄

2(24−φ) , respectively.

Finally, given these period-1 actions, (10)–(12) imply that the following period-2 actions will

occur on the equilibrium path

(xA2 , x
B
2 ) =


(

3(1−φ)s̄
2(24−φ) ,

3(1−φ)s̄
2(24−φ)

)
if s = s̄(

− (32−9φ)s̄
2(24−φ) ,

8(1−φ)s̄
24−φ

)
if s = −s̄

• Bids. Plugging in the trading behavior derived above, we have the following. If s = s̄ and if

dealer A wins, then dealer A’s continuation utility is c+ 18(1−φ)2s̄2

(24−φ)2 , and dealer B’s continuation

utility is −135(1−φ)2s̄2

4(24−φ)2 . By symmetry, if dealer B wins, then dealer A’s continuation utility would

be −135(1−φ)2s̄2

4(24−φ)2 .

If s = −s̄ and if dealer A wins, then dealer A’s continuation utility is c − (64+5φ)(32−9φ)s̄2

4(24−φ)2 , and

dealer B’s continuation utility is 4(1−φ)(16+7φ)s̄2

(24−φ)2 . By symmetry, if dealer B wins, then dealer A’s

continuation utility would be 4(1−φ)(16+7φ)s̄2

(24−φ)2 .

Because the dealer sets a non-binding reserve, the event in which neither dealer wins is not

relevant. Based on the solution concept described in Section 3.1, dealer A must therefore bid

(
bA−s̄, b

A
s̄

)
=

(
(2304− 560φ− 157φ2)s̄2

4(24− φ)2
,−207(1− φ)2s̄2

4(24− φ)2

)
.

Part (iii): We check that the equilibrium specified above satisfies the restrictions on beliefs de-

scribed in Section 3.1. And we also show that any equilibrium satisfying those conditions must

feature on-path behavior coinciding with that of the equilibrium specified above. Let µ̃B2 be can-

didate beliefs. One requirement is that µ̃B2 must have the step-function structure described in the

text. We then partition the possible µ̃B2 into four cases:

• Suppose, by way of contradiction, that we have an equilibrium with beliefs such that µ̃B2 ( 7(1−φ)s̄
2(24−φ)) =

0. By the step-function structure of µ̃B2 and because beliefs must be correct on path, this

means that on path, dealer A sets xA1 = x∗ > 7(1−φ)s̄
2(24−φ) when s = s̄. Arguments similar to those
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given above imply that we have xA1 = 7φx∗−(9+7φ)s̄
27+5φ when s = −s̄ and xB1 = −14φx∗+9(1−φ)s̄

27+5φ .

And when s = s̄, we subsequently have xA2 = xB2 = −x∗+xB1
3 , leading to total trading costs for

dealer A of

(x∗ + xB1 )x∗ − 1

9
(x∗ + xB1 )2, (15)

evaluated at xB1 = −14φx∗+9(1−φ)s̄
27+5φ . Now consider two cases:

– First, suppose there exists a ε > 0 such that µ̃B2 (x∗−ε) = 1. In that case, it follows from

equation (15) that x∗ can be a locally optimal choice for dealer A only if xA1 = −7xB1
16 .

Given that xB1 = −14φx∗+9(1−φ)s̄
27+5φ , this requires x∗ = 7(1−φ)s̄

2(24−φ) , a contradiction.

– Second, suppose that for all ε > 0, µ̃B2 (x∗ − ε) = 0. In that case, if dealer A deviates to

xA1 = x∗ − ε when s = s̄, then we subsequently have xB2 = −xB1 and xA2 = −xA1
2 , leading

to total trading costs for dealer A that for small ε are well approximated by

(x∗ + xB1 )x∗ − 1

4
(x∗)2, (16)

evaluated at xB1 = −14φx∗+9(1−φ)s̄
27+5φ . Comparing (16) to (15) and using xB1 = −14φx∗+9(1−φ)s̄

27+5φ ,

we see that this is a profitable deviation if x∗ > 6(1−φ)s̄
45−φ , which is implied by x∗ > 7(1−φ)s̄

2(24−φ) .

• Thus, we know that µ̃B2 ( 7(1−φ)s̄
2(24−φ)) = 1. Arguments similar to those given above imply that our

only candidate equilibrium entails xA1 = 7(1−φ)s̄
2(24−φ) when s = s̄, xA1 = − (16+7φ)s̄

2(24−φ) when s = −s̄,

and xB1 = −8(1−φ)s̄
24−φ . And when s = s̄, we subsequently have xA2 = xB2 = −xA1 +xB1

3 , leading to

total trading costs for dealer A of

− 18(1− φ)2s̄2

(24− φ)2
. (17)

Now suppose, by way of contradiction, that we have an equilibrium with beliefs such that

µ̃B2 (2(1−φ)(8−
√

10)s̄
3(24−φ) + ε) = 0 for some ε > 0. Suppose then that dealer A deviated to set

xA1 = 2(1−φ)(8−
√

10)s̄
3(24−φ) + ε when s = s̄. Arguments similar to those given above imply that

we would subsequently have xB2 = −xB1
2 and xA2 = −xA1

2 , leading to total trading costs for

dealer A of

(xA1 + xB1 )xA1 −
(xA1 )2

4
. (18)

Comparing (18) to (17), we see that this is a profitable deviation for sufficiently small ε > 0.

• Suppose, by way of contradiction, that we have an equilibrium with beliefs such that µ̃B2 (− (16+7φ)s̄
2(24−φ) ) =

1. By the step-function structure of µ̃B2 and because beliefs must be correct on path, this

means that on path, dealer A sets xA1 = x∗ < − (16+7φ)s̄
2(24−φ) when s = −s̄. Arguments similar to

those given above imply that we have xA1 = 7(1−φ)(s̄+x∗)
32−9φ when s = s̄ and xB1 = −16(1−φ)(s̄+x∗)

32−9φ .

When s = −s̄, we subsequently have xA2 = −s̄ − xA1 and xB2 = −xB1 , leading to equilibrium
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trading costs for dealer A, denoted CA∗ (−s̄), equal to(
xA1 −

16(1− φ)(s̄+ x∗)

32− 9φ

)
xA1 + s̄(s̄+ xA1 ) (19)

evaluated at xA1 = x∗. Alternatively, when s = s̄, we subsequently have xA2 = xB2 = −xA1 +xB1
3 .

Plugging in, dealer A’s equilibrium trading costs are

CA∗ (s̄) = −72(1− φ)2(s̄+ x∗)2

(32− 9φ)2
. (20)

Now define x̂ ≡ − (16+7φ)s̄−16(1−φ)x∗

2(32−9φ) . Note that x̂ > x∗, which follows from x∗ < − (16+7φ)s̄
2(24−φ) .

Suppose that dealer A deviated to set xA1 = x̂ when s = −s̄ and that—perhaps contrary to

the putative beliefs—this were to induce a belief µB2 = 0. Arguments similar to those given

above imply that we would subsequently have xA2 = −s̄ − xA1 and xB2 = −xB1 , leading to

trading costs for dealer A, denoted CA(−s̄, x̂, 0), equal to (19) evaluated at xA1 = x̂. Note

that this choice optimizes (19). On the other hand, because x∗ 6= x̂, it does not optimize (19).

We therefore conclude CA(−s̄, x̂, 0) < CA∗ (−s̄).

On the other hand, suppose that dealer A deviated to set xA1 = x̂ when s = s̄ and that this

were to induce a belief µB2 ∈ [0, 1]. Arguments similar to those given above imply that we

would subsequently have

xA2 =
[16(1− φ)x∗ + (48− 25φ)s̄]µB2

2(32− 9φ)(4− µB2 )
xB2 =

[(48− 25φ)s̄+ 16(1− φ)x∗](4− 3µB2 )

2(32− 9φ)(4− µB2 )
,

leading to trading costs of

CA
(
s̄, x̂, µB2

)
=

2[(48− 25φ)s̄+ 16(1− φ)x∗]
(
[2(16 + 7φ)− (16 + 7φ)µB2 − 4(1− φ)(µB2 )2]s̄− 4(1− φ)x∗[(µB2 )2 − 4µB2 + 8]

)
(32− 9φ)2(4− µB2 )2

This is minimized at µB2 = 0, and hence

min
µB2 ∈[0,1]

CA
(
s̄, x̂, µB2

)
=

[(48− 25φ)s̄+ 16(1− φ)x∗][(16 + 7φ)s̄− 16(1− φ)x∗]

4(32− 9φ)2
. (21)

Comparing (21) to (20), it can be shown that CA∗ (s̄) < minµB2 ∈[0,1]C
A
(
s̄, x̂, µB2

)
. The putative

equilibrium therefore fails our intuitive criterion test.

• Finally, suppose we have an equilibrium with beliefs such that both µ̃B2 (2(1−φ)(8−
√

10)s̄
3(24−φ) +ε) = 1

for all ε > 0 and µ̃B2 (− (16+7φ)s̄
2(24−φ) ) = 0. Using arguments similar to those given above, we can

show that any such equilibrium induces the same on-path behavior as the equilibrium specified

above. In particular, dealer A’s equilibrium trading costs are as above: CA∗ (s̄) = −18(1−φ)2s̄2

24−φ)2

and CA∗ (−s̄) = (62+5φ)(32−9φ)s̄2

4(24−φ)2 . We can also use arguments similar to those given above to
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compute

CA(s̄, xA1 , 1) =


(
xA1 −

8(1−φ)s̄
24−φ

)
(xA1 )− 1

9

(
xA1 −

8(1−φ)s̄
24−φ

)2
if − 16(1−φ)s̄

24−φ ≤ xA1 ≤ s̄(
xA1 −

8(1−φ)s̄
24−φ

)
(xA1 )− (

xA1
2 )2 if 2s̄− 4 ≤ xA1 ≤ −

16(1−φ)s̄
24−φ(

xA1 −
8(1−φ)s̄

24−φ

)
(xA1 ) + (s̄− 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 ≤ 2s̄− 4

CA(s̄, xA1 , 0) =
{(
xA1 −

8(1−φ)s̄
24−φ

)
(xA1 ) + s̄(s̄+ xA1 ) if − s̄ ≤ xA1 ≤ s̄

And so we conclude that for all xA1 ∈ [−s̄, s̄], CA(s̄, xA1 , 1) ≥ CA∗ (s̄) and CA(−s̄, xA1 , 0) ≥
CA∗ (−s̄). Hence, the intuitive criterion does not rule out any such equilibrium (e.g., the

equilibrium specified above).

Case 2: (eA, eB) = (1,−1). Here is a full specification of an WPBE for this case. Dealer A bids(
bA−s̄, b

A
s̄

)
=
(

7s̄2

16 ,
s̄2

4

)
. Henceforth, suppose that dealer A wins. If s = s̄, dealer A sets xA1 = 0 and

xA2 =



−xA1 +xB1
3 if max{3s̄

2 +
xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

s̄− 2− xA1 if − s̄
6 ≤ x

A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

−xA1
2 max{− s̄

6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤
xA1
2

s̄− 2− xA1 if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

− s̄
4 −

xA1
2 −

xB1
4 if max{−s̄, 5s̄+xB1

2 − 4} ≤ xA1 < − s̄
6 and − s̄ ≤ xB1 ≤ s̄

s̄− 2− xA1 if − s̄ ≤ xA1 < min{5s̄+xB1
2 − 4,− s̄

6} and − s̄ ≤ xB1 ≤ s̄

(22)

If s = −s̄, dealer A sets xA1 = − s̄
4 and

xA2 =
{
−s̄− xA1 if − s̄ ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤ s̄ (23)

Dealer B sets xB1 = 0 and

xB2 =



−xA1 +xB1
3 if max{3s̄

2 +
xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

− s̄
2 + 1− xB1

2 if − s̄
6 ≤ x

A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

−xB1 if max{− s̄
6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

−xB1 if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

s̄
2 −

xB1
2 if − s̄ ≤ xA1 < − s̄

6 and − s̄ ≤ xB1 ≤ s̄

(24)

Dealers’ beliefs prior to bidding are µA0 = µB0 = φ. Dealer B’s beliefs prior to first-period trading

are µB1 = 1. Dealer B’s beliefs prior to second-period trading are

µB2 =

1 if − s̄
6 ≤ x

A
1 ≤ s̄

0 if − s̄ ≤ xA1 < − s̄
6
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We claim that the specified strategies and beliefs satisfy the solution concept described in Section 3.1

and moreover that anything else also satisfying the solution concept must feature the same on-path

behavior. The argument consists of three parts.

Part (i): We check the consistency of dealer B’s beliefs. First, consider dealer B’s beliefs (con-

ditional on losing) at the point just after having observed the auction’s outcome. In this case,

dealer A bids
(
bA−s̄, b

A
s̄

)
=
(

7s̄2

16 ,
s̄2

4

)
, while dealer B bids

(
bB−s̄, b

B
s̄

)
=
(
s̄2

4 ,
7s̄2

16

)
. It follows that

dealer B loses iff s = s̄. Thus, we indeed have µB1 = 1. Second, consider dealer B’s beliefs (condi-

tional on losing) at the point just after having observed the first trading period’s outcome. Given

the specified strategy for dealer A, Bayes’ rule requires only that

µB2 =

1 if xA1 = 0

0 if xA1 = − s̄
4

This is indeed consistent with the specified beliefs.

Part (ii): Given the specified beliefs, we check that the solution concept uniquely pins down the

specified strategies. We proceed by backward induction:

• Period-2 reaction functions. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . For s ∈

{−s̄, s̄}, dealer A best responds with xA2 =
[
−xA1 +xB1 +xB2

2

]s−xA1
s−2−xA1

. Dealer B’s trading costs are

(xA1 + xA2 + xB2 )xB2 . Dealer B best responds with xB2 =
[
−xA1 +xB1 +xA2

2

]2−xB1

−xB1
.

• Dealer B’s period-2 action. If − s̄
6 ≤ xA1 ≤ s̄ so that µB2 = 1, then xB2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB1 +xB2

2

]s̄−xA1
s̄−2−xA1

and xB2 =
[
−xA1 +xB1 +xA2

2

]2−xB1

−xB1
, so that we indeed have:

xB2 =



−xA1 +xB1
3 if max{3s̄

2 +
xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

− s̄
2 + 1− xB1

2 if − s̄
6 ≤ x

A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

−xB1 if max{− s̄
6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

−xB1 if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

If −s̄ ≤ xA1 < − s̄
6 so that µB2 = 0, then xB2 is pinned down by the intersection of xA2 =[

−xA1 +xB1 +xB2
2

]−s̄−xA1
−s̄−2−xA1

and xB2 =
[
−xA1 +xB1 +xA2

2

]2−xB1

−xB1
, so that we indeed have:

xB2 =
{
s̄
2 −

xB1
2 if − s̄ ≤ xA1 < − s̄

6 and − s̄ ≤ xB1 ≤ s̄

Together, these two cases verify (24).

• Dealer A’s period-2 action. If s = s̄, then xA2 is pinned down by the intersection of xA2 =[
−xA1 +xB1 +xB2

2

]s̄−xA1
s̄−2−xA1

and (24), which verifies (22). If s = −s̄, then xA2 is pinned down by the
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intersection of xA2 =
[
−xA1 +xB1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and (24), which verifies (23).

• Period-1 actions. Dealer A’s trading costs are (xA1 + xB1 )xA1 + (xA1 + xB1 + xA2 + xB2 )xA2 . If s = s̄,

then we can plug in (22) and (24) to express dealer A’s trading costs as a function of (xA1 , x
B
1 ):

(xA1 + xB1 )xA1 − (
xA1 +xB1

3 )2 if max{3s̄
2 +

xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

(xA1 + xB1 )xA1 + ( s̄2 − 1 +
xB1
2 )(s̄− 2− xA1 ) if − s̄

6 ≤ x
A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

(xA1 + xB1 )xA1 − (
xA1
2 )2 max{− s̄

6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤
xA1
2

(xA1 + xB1 )xA1 + (s̄− 2)(s̄− 2− xA1 ) if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

(xA1 + xB1 )xA1 − ( s̄4 +
xA1
2 +

xB1
4 )2 if max{−s̄, 5s̄+xB1

2 − 4} ≤ xA1 < − s̄
6 and − s̄ ≤ xB1 ≤ s̄

(xA1 + xB1 )xA1 + (3s̄
2 − 2 +

xB1
2 )(s̄− 2− xA1 ) if − s̄ ≤ xA1 < min{5s̄+xB1

2 − 4,− s̄
6} and − s̄ ≤ xB1 ≤ s̄

Rather than to derive dealer A’s function of best responses to xB1 , we instead derive two auxiliary

functions. First, we derive dealer A’s best response among first-period trades satisfying − s̄
6 ≤

xA1 ≤ s̄:

xA1 (xB1 ) =



−2xB1
3 if − s̄ ≤ xB1 ≤ 0

−7xB1
16 if 0 ≤ xB1 ≤ min{ 8s̄

21 ,
8(2−s̄)

5 }

− s̄
6 if 8s̄

21 ≤ x
B
1 ≤ −10s̄

3 + 6

3s̄
2 +

xB1
2 − 3 if max{8(2−s̄)

5 ,−10s̄
3 + 6} ≤ xB1 ≤

5(2−s̄)
3

s̄
4 −

1
2 −

xB1
4 if 5(2−s̄)

3 ≤ xB1 ≤ 5s̄
3 − 2

− s̄
6 if max{−10s̄

3 + 6, 5s̄
3 − 2} ≤ xB1 ≤ s̄

(25)

Second, we derive dealer A’s best response among first-period trades satisfying xA1 < − s̄
6 . Because

the domain is not compact, this function is not defined everywhere:

xA1 (xB1 ) =


undefined if − s̄ ≤ xB1 ≤ max{2s̄

3 ,
11s̄
3 − 4}

s̄
6 −

xB1
2 if 2s̄

3 < xB1 ≤ −7s̄
3 + 4

3s̄
2 +

xB1
2 − 3 if max{−7s̄

3 + 4, 11s̄
3 − 4} < xB1 ≤ s̄

(26)

Dealer B’s trading costs are (xA1 + xB1 )xB1 + (xA1 + xB1 + xA2 + xB2 )xB2 . If s = s̄, then we can plug
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in (22) and (24) to express dealer B’s trading costs as a function of (xA1 , x
B
1 ):

(xA1 + xB1 )xA1 − (
xA1 +xB1

3 )2 if max{3s̄
2 +

xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

(xA1 + xB1 )xB1 − ( s̄2 − 1 +
xB1
2 )2 if − s̄

6 ≤ x
A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

(xA1 + xB1 )xB1 + (
xA1
2 )(−xB1 ) max{− s̄

6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤
xA1
2

(xA1 + xB1 )xB1 + (s̄− 2)(−xB1 ) if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

(xA1 + xB1 )xB1 + ( s̄4 +
xA1
2 +

xB1
4 )( s̄2 −

xB1
2 ) if max{−s̄, 5s̄+xB1

2 − 4} ≤ xA1 < − s̄
6 and − s̄ ≤ xB1 ≤ s̄

(xA1 + xB1 )xB1 + (3s̄
2 − 2 +

xB1
2 )( s̄2 −

xB1
2 ) if − s̄ ≤ xA1 < min{5s̄+xB1

2 − 4,− s̄
6} and − s̄ ≤ xB1 ≤ s̄

Because dealer B attaches probability one to s = s̄ (i.e., µB1 = 1), dealer B selects xB1 to minimize

this objective. Optimizing, we can express xB1 in terms of xA1 :

xB1 (xA1 ) =


s̄−2

3 −
2xA1

3 if − s̄ ≤ xA1 ≤ max{− s̄
6 ,

16(s̄−2)
13 }

−7xA1
16 if max{− s̄

6 ,
16(s̄−2)

13 } ≤ xA1 ≤ 0

−xA1
4 if 0 ≤ xA1 ≤ s̄

(27)

To determine equilibrium period-1 actions, we argue as follows. First, observe that (26) and (27)

do not intersect. This implies that there is no equilibrium in which xA1 ∈ [−s̄,− s̄
6) when s = s̄.

Second, observe that (25) and (27) have a unique intersection at (xA1 , x
B
1 ) = (0, 0). This is

the unique candidate for an equilibrium involving a choice of xA1 ∈ [− s̄
6 , s̄] when s = s̄. To

show that this is in fact an equilibrium, we simply need to additionally verify that no choice of

xA1 ∈ [−s̄,− s̄
6) yields smaller trading costs for dealer A’s than xA1 = 0 when s = s̄ and xB1 = 0,

which is easily shown.24

Having pinned down xB1 = 0 and that xA1 = 0 if s = s̄, the final step is to derive what xA1 would

be if s = −s̄. Using xB1 = 0, as derived above, we can plug in (23) and (24) to express dealer A’s

trading costs as a function of xA1 :

xB2 =



xA1 x
A
1 + (−s̄)(−s̄− xA1 ) if 0 ≤ xA1 ≤ s̄

xA1 x
A
1 + (−s̄− xA1

3 )(−s̄− xA1 ) if max{3s̄
2 − 3,− s̄

6} ≤ x
A
1 ≤ 0

xA1 x
A
1 + (−3s̄

2 + 1)(−s̄− xA1 ) if − s̄
6 ≤ x

A
1 ≤ 3s̄

2 − 3

xA1 x
A
1 + (− s̄

2)(−s̄− xA1 ) if − s̄ ≤ xA1 < − s̄
6

which is indeed minimized by xA1 = − s̄
4 .

24Plugging xB1 = 0 into the previously-derived expression for dealer A’s trading costs when s = s̄, we obtain that
a choice of xA1 = 0 yields trading costs of zero and that choices of xA1 ∈ [−s̄,− s̄

6
) yield the strictly positive trading

costs {
1
16

(2xA1 − s̄)(6xA1 + s̄) if max{−s̄, 5s̄
2
− 4} ≤ xA1 < − s̄

6
1
16

(2xA1 − s̄)(6xA1 + s̄) + 1
16

(5s̄− 2xA1 − 8)2 if − s̄ ≤ xA1 < min{ 5s̄
2
− 4,− s̄

6
}
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• Bids. Plugging in the trading behavior derived above, we have the following. If s = s̄ and if

dealer A wins, then dealer A’s continuation utility is c, and dealer B’s continuation utility is 0.

If s = −s̄ and if dealer A wins, then dealer A’s continuation utility is c − 7s̄2

16 , and dealer B’s

continuation utility is s̄2

4 .

By symmetry, if s = s̄ and if dealer B wins, then dealer A’s continuation utility is s̄2

4 . If s = −s̄
and if dealer B wins, then dealer A’s continuation utility is 0. Because the dealer sets a non-

binding reserve, the event in which neither dealer wins is not relevant. Based on the solution

concept described in Section 3.1, dealer A must therefore bid

(
bA−s̄, b

A
s̄

)
=

(
7s̄2

16
,
s̄2

4

)
.

Part (iii): We check that the equilibrium specified above satisfies the restrictions on beliefs de-

scribed in Section 3.1. And we also show that any equilibrium satisfying those conditions must

feature on-path behavior coinciding with that of the equilibrium specified above. Let µ̃B2 be can-

didate beliefs. One requirement is that µ̃B2 must have the step-function structure described in the

text. We then partition the possible µ̃B2 into four cases:

• Suppose, by way of contradiction, that we have an equilibrium with beliefs such that µ̃B2 (0) =

0. By the step-function structure of µ̃B2 and because beliefs must be correct on path, this

means that on path, dealer A sets xA1 = x∗ > 0 when s = s̄. Arguments similar to those given

above imply that we have xB1 = −x∗

4 , and subsequently, xA2 = −x∗

2 and xB2 = −xB1 , leading

to total trading costs for dealer A of

(x∗ + xB1 )x∗ − 1

4
(x∗)2, (28)

evaluated at xB1 = −x∗

4 . Now consider two cases:

– First, suppose there exists a ε > 0 such that µ̃B2 (x∗−ε) = 1. In that case, it follows from

equation (28) that x∗ can be a locally optimal choice for dealer A only if xA1 = −2xB1
3 .

Given that xB1 = −x∗

4 , this requires x∗ = 0, a contradiction.

– Second, suppose that for all ε > 0, µ̃B2 (x∗ − ε) = 0. In that case, if dealer A deviates to

xA1 = x∗− ε when s = s̄, then we subsequently have xB2 = s̄
2 −

xB1
2 and xA2 = − s̄+2xA1 +xB1

4 ,

leading to total trading costs for dealer A that for small ε are well approximated by

(x∗ + xB1 )x∗ −
(
s̄

4
+

7x∗

16

)2

, (29)

evaluated at xB1 = −x∗

4 . Comparing (29) to (28) and using x∗ > 0, we see that this is a

profitable deviation.

• Thus, we know that µ̃B2 (0) = 1. Arguments similar to those given above imply that our

only candidate equilibrium entails that when s = s̄, xA1 = 0, xB1 = 0, and subsequently,
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xA2 = xB2 = 0, leading to total trading costs for dealer A of 0. Now suppose, by way of

contradiction, that we have an equilibrium with beliefs such that µ̃B2 (− s̄
6 + ε) = 0 for some

ε > 0. By the step-function structure of µ̃B2 and because beliefs must be correct on path,

we can choose ε > 0 arbitrarily small (and in particular less than 2s̄
3 ). Suppose then that

dealer A deviated to set xA1 = − s̄
6 + ε when s = s̄. Arguments similar to those given above

imply that we would subsequently have xB2 = s̄
2 and xA2 = − s̄

4 −
xA1
2 , leading to total trading

costs for dealer A of − ε
4(2s̄− 3ε), which is a profitable deviation for sufficiently small ε > 0.

• Suppose, by way of contradiction, that we have an equilibrium with beliefs such that µ̃B2 (− s̄
4) =

1. The same arguments used in the proof of Lemma 1 can be used to show that the putative

equilibrium fails our intuitive criterion test.

• Finally, suppose we have an equilibrium with beliefs such that both µ̃B2 (− s̄
6 + ε) = 1 for all

ε > 0 and µ̃B2 (− s̄
4) = 0. The same arguments used in the proof of Lemma 1 can be used to

show that the intuitive criterion does not rule out any such equilibrium (e.g., the equilibrium

specified above).

This completes the proof.

A.3 Proof of Proposition 3

Proof. Begin with an arbitrary RFQ policy that contacts two dealers with probabilities (qs′)s′∈{−s̄,s̄}

and one dealer with the complementary probabilities (1− qs′)s′∈{−s̄,s̄}. It suffices to show that the

following RFQ policy does no worse: (i) define Σ as the singleton {σ0}; (ii) for s′ ∈ {−s̄, s̄}, de-

fine the distribution πs′ to attach probability qs′ to
(
σ0, 2, (s̄

2, s̄2)
)

and complementary probability

1− qs′ to
(
σ0, 1, (

3s̄2

4 ,
3s̄2

4 )
)
. Indeed:

• This new policy does no worse conditional on contacting a single dealer, since, by Lemma 1,

it ensures execution with probability one and achieves the cost lower bound ĉ1. Note that the

information about s communicated by this new policy is a garbling of that communicated by

the original policy. However, there is no role for information design when only one dealer is

contacted, because ĉ1 is constant in φ for the reasons discussed at the end of Section 3.2.

• This new policy also does no worse conditional on contacting two dealers—and may in fact do

strictly better. By Lemma 2, this policy ensures execution with probability one and achieves

the cost ĉ2 evaluated at the belief φ0qs̄
(1−φ0)q−s̄+φ0qs̄

. As mentioned, the information about s com-

municated by this new policy is a garbling of that communicated by the original policy. Thus,

by standard arguments from the Bayesian persuasion literature (e.g., Kamenica and Gentzkow,

2011), the new policy is guaranteed to reduce the client’s cost if ĉ2(φ) is convex, which by

Lemma 2 is indeed the case.

It only remains to argue that such an RFQ policy achieves optimality. To see this, note that

policies of this form are described by two numbers: q−s̄ ∈ [0, 1] and qs̄ ∈ [0, 1]. Thus, the claim
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follows because (i) this class of policies is compact, and (ii) within this class of policies, the client’s

procurement cost is a continuous function of (q−s̄, qs̄).

A.4 Proof of Proposition 4

Proof. To begin, it is useful to observe that it follows from Definition 1 that φ = 0 implies

ĉ2(φ)− φĉ′2(φ) ≤ ĉ1; φ ∈ (0, 1) implies ĉ2(φ)− φĉ′2(φ) = ĉ1; and φ = 1 implies ĉ2(φ)− φĉ′2(φ) ≥ ĉ1.

As noted in the text, it suffices to focus on RFQ policies of the form described in Proposition 3.

Such RFQ policies are described by two numbers: q−s̄ and qs̄, which capture the probability with

which the client contacts two dealers when s = −s̄ and s = s̄, respectively. This implies that if two

dealers are contacted, then the posterior probability of s = s̄ is

φ0qs̄
(1− φ0)q−s̄ + φ0qs̄

.

Hence, the client’s expected procurement cost is

[(1− φ0) (1− q−s̄) + φ0 (1− qs̄)] ĉ1 + [(1− φ0)q−s̄ + φ0qs̄] ĉ2

(
φ0qs̄

(1− φ0)q−s̄ + φ0qs̄

)
. (30)

To prove claim (i), we use ĉ1 ≥ min{ĉ1, ĉ2(φ)} ≥ C(φ) and ĉ2(φ) ≥ min{ĉ1, ĉ2(φ)} ≥ C(φ) for all

φ ∈ [0, 1] to obtain that (30) is bounded below by

[(1− φ0) (1− q−s̄) + φ0 (1− qs̄)]C
(

φ0 (1− qs̄)
(1− φ0) (1− q−s̄) + φ0 (1− qs̄)

)
+ [(1− φ0)q−s̄ + φ0qs̄]C

(
φ0qs̄

(1− φ0)q−s̄ + φ0qs̄

)
,

which is bounded below by C(φ0), by the convexity of C(·).
To prove claim (iii), we begin by defining the following linear function

L(iii)(φ) = ĉ2(φ0)− φ0ĉ
′
2(φ0) + ĉ′2(φ0)φ.

We claim that for all φ ∈ [0, 1], L(iii)(φ) ≤ min{ĉ1, ĉ2(φ)}:

• First, we show that L(iii)(φ) ≤ ĉ1 for all φ ∈ [0, 1]. By linearity, it suffices to check the endpoints.

By assumption, φ0 ≥ φ, and since we also have φ0 ∈ (0, 1), this implies that φ < 1. Hence,

as observed above, we have ĉ2(φ) − φĉ′2(φ) ≤ ĉ1. Additionally, as established in footnote 17,

ĉ2(φ)− φĉ′2(φ) is strictly decreasing. Thus, because φ0 ≥ φ, it follows that

L(iii)(0) = ĉ2(φ0)− φ0ĉ
′
2(φ0) ≤ ĉ2(φ)− φĉ′2(φ) ≤ ĉ1.

An analogous argument establishes that L(iii)(1) ≤ ĉ1.

• Second, note that L(iii)(φ) is tangent to ĉ2(φ) at φ = φ0. Indeed, we have both L(iii)(φ0) = ĉ2(φ0)

50



and also L′(iii)(φ0) = ĉ′2(φ0). Thus, convexity of ĉ2(φ) implies that L(iii)(φ) ≤ ĉ2(φ) for all

φ ∈ [0, 1].

It follows that C(φ0) ≥ L(iii)(φ0) = ĉ2(φ0), which is precisely what is obtained from plugging

q−s̄ = 1 and qs̄ = 1 into (30).

To prove claim (iv), we begin by defining the following linear function

L(iv)(φ) = ĉ1 +
ĉ2(φ)− ĉ1

φ
φ.

We claim that for all φ ∈ [0, 1], L(iv)(φ) ≤ min{ĉ1, ĉ2(φ)}:

• First, we show that L(iv)(φ) ≤ ĉ2(φ) for all φ ∈ [0, 1]. By assumption, φ0 < φ, which implies

that φ > 0. On the one hand, if φ ∈ (0, 1), then L(iv)(φ) is tangent to ĉ2(φ) at φ = φ. Indeed,

we have both L(iv)(φ) = ĉ2(φ) and also L′(iv)(φ) =
ĉ2(φ)−ĉ1

φ = ĉ′2(φ), where the last equality is

because, as observed above, φ ∈ (0, 1) implies ĉ2(φ)− φĉ′2(φ) = ĉ1. On the other hand, if φ = 1,

then by analogous arguments we have both L(iv)(φ) = ĉ2(φ) and L′(iv)(φ) ≤ ĉ′2(φ). In either case,

convexity of ĉ2(φ) implies that L(iv)(φ) ≤ ĉ2(φ) for all φ ∈ [0, 1].

• Second, we show that L(iv)(φ) ≤ ĉ1 for all φ ∈ [0, 1]. We showed above that L(iv)(φ) ≤ ĉ2(φ)

for all φ ∈ [0, 1]; so in particular, we have L(iv)(
1
2) ≤ ĉ2(1

2). According to Lemma 2, ĉ2(1
2) < ĉ1.

Hence, L(iv)(
1
2) < ĉ1, which implies ĉ2(φ) − ĉ1 < 0, and thus L(iv)(φ) ≤ ĉ1 for all φ ∈ [0, 1], as

desired.

It follows that

C(φ0) ≥ L(iv)(φ0) =
ĉ2(φ0)− ĉ1

φ
φ0 + ĉ1,

which is precisely what is obtained from plugging q−s̄ =
φ0(1−φ)

φ(1−φ0) and qs̄ = 1 into (30). The proof of

claim (v) is analogous.

Finally, we prove claim (ii): that φ ≤ φ. The claim is non-vacuous only if φ > 0. So as

established in the proof of claim (iv), ĉ2(φ) − ĉ1 < 0. And as observed above, φ > 0 implies

ĉ2(φ)− φĉ′2(φ) ≥ ĉ1. Together, these imply that ĉ′2(φ) < 0. Analogously, the claim is non-vacuous

only if φ < 1, and we can analogously argue that ĉ′2(φ) > 0. Convexity of ĉ2(·) therefore delivers

the desired φ ≤ φ.
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A.5 Proof of Lemma 5

Proof. A derivation analogous to that in the proof of Lemma 2 allows us to characterize the client’s

expected procurement cost conditional on her type:

ĉ2,−s̄(φ) =
(2304− 560φ− 157φ2)s̄2

4(24− φ)2
ψ[1− (1− ψ)(1− ρ)]

− 207φ2s̄2

4(23 + φ)2
(1− ψ)[1− ψ(1− ρ)] +

7s̄2

16
2ψ(1− ψ)(1− ρ)

ĉ2,s̄(φ) =
(1587 + 874φ− 157φ2)s̄2

4(23 + φ)2
(1− ψ)[1− ψ(1− ρ)]

− 207(1− φ)2s̄2

4(24− φ)2
ψ[1− (1− ψ)(1− ρ)] +

7s̄2

16
2ψ(1− ψ)(1− ρ).

To establish the claim, we simply compute

ĉ′2,−s̄(φ) = −184(12 + 11φ)s̄2

(24− φ)3
ψ[1− (1− ψ)(1− ρ)]− 4761φs̄2

2(23 + φ)3
(1− ψ)[1− ψ(1− ρ)],

which is indeed weakly negative on the domain φ ∈ [0, 1].

ĉ′2,s̄(φ) =
184(23− 11φ)s̄2

(23 + φ)3
(1− ψ)[1− ψ(1− ρ)] +

4761(1− φ)s̄2

2(24− φ)3
ψ[1− (1− ψ)(1− ρ)],

which is indeed weakly positive on the domain φ ∈ [0, 1].
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B Order splitting

In this appendix, we consider what would happen if the client were to contact both dealers and—

rather than auction her entire order as a single indivisible unit—instead permits each dealer to

win only half of the total order. For simplicity, suppose the client continues to treat the order as

indivisible in the sense that she allocates the order only if both dealers’ bids meet her reservation

price. In other words, the game ends if one or both dealers fail to meet the reserve.

Given the structure of the model, it is common knowledge that the client seeks to trade s̄ shares.

Thus, if a dealer is awarded an order for s̄
2 shares, he knows that the other dealer is also being

awarded an order of the same size. Is this knowledge an artifact of the model or is it realistic?

Based on conversations with industry participants, we believe the latter. Although in principle, it

would be possible to deceive two dealers into believing that each has been awarded the full order,

when in reality each has been awarded only a fraction, this behavior is avoided in practice because

of the reputational consequences it would create.

The following result characterizes the continuation equilibrium following such an RFQ.

Lemma B1. There is a WPBE in which the following occurs on path. Dealer A bids

(
bA−s̄, b

A
s̄

)
=



(
7s̄2

18 , 0
)

if (eA, eB) = (1, 1)(
7s̄2

50 ,−
7s̄2

100

)
if (eA, eB) = (1,−1)(

− 7s̄2

100 ,
7s̄2

50

)
if (eA, eB) = (−1, 1)(

0, 7s̄2

18

)
if (eA, eB) = (−1,−1)

If both dealers win, dealer A’s on-market trades are

(xA1 , x
A
2 ) =



(0, 0) if (s, eA, eB) = (s̄, 1, 1)

(− s̄
3 ,−

s̄
6) if (s, eA, eB) = (−s̄, 1, 1)

( s̄
10 ,−

3s̄
10) if (s, eA, eB) = (s̄, 1,−1)

(− s̄
10 ,−

2s̄
5 ) if (s, eA, eB) = (−s̄, 1,−1)

( s̄
10 ,

2s̄
5 ) if (s, eA, eB) = (s̄,−1, 1)

(− s̄
10 ,

3s̄
10) if (s, eA, eB) = (−s̄,−1, 1)

( s̄3 ,
s̄
6) if (s, eA, eB) = (s̄,−1,−1)

(0, 0) if (s, eA, eB) = (−s̄,−1,−1)

Dealer B’s bids and on-market trades are specified symmetrically.

Proof Sketch of Lemma B1. The proof sketch that we provide here is informal in that we (i) di-

rectly plug in the constraints that will bind on the equilibrium path, and (ii) ignore the constraints

that do not bind on the equilibrium path. These simplifications do not affect the result. Indeed,
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the proof could be made more formal in the same way that the proofs of the analogous main results

(Lemmas 1 and 2) are fully formal.

Because both dealers observe the entire vector (eA, eB), the four possible realizations of that

vector can be analyzed separately. Below, we analyze the cases of (1, 1) and (1,−1); the remaining

cases can be handled symmetrically. We also note that in this case of order splitting, both dealers

observe s directly before trading takes place, and so there is no need to keep track of beliefs. Thus,

the cases of s = −s̄ and s = s̄ can also be analyzed separately.

Case 1: (eA, eB) = (1, 1) and s = s̄. Ignoring the constraints on final inventory (which will not

bind in the equilibrium), dealers A and B respectively minimize

(xA1 + xB1 )xA1 + (xA1 + xB1 + xA2 + xB2 )xA2

(xA1 + xB1 )xB1 + (xA1 + xB1 + xA2 + xB2 )xB2 ,

leading to xA2 = xB2 = −xA1 +xB1
3 . Inducting backward, we obtain (xA1 , x

B
1 ) = (0, 0), so that

(xA2 , x
B
2 ) = (0, 0) on path. Plugging in these trades, dealer A incurs no trading costs if he wins. So

the refinement described in Section 3.1 requires bAs̄ = 0 to be his bid.

Case 2: (eA, eB) = (1, 1) and s = −s̄. Assuming that xA2 = − s̄
2 −x

A
1 (which ensures that dealer A’s

final inventory just meets the constraint eA + xA1 + xA2 − s ≤ 1), assuming also that xB2 = − s̄
2 − x

B
1

(symmetrically), and ignoring all other constraints on final inventory, dealers A and B respectively

minimize

(xA1 + xB1 )xA1 + (−s̄)
(
− s̄

2
− xA1

)
(xA1 + xB1 )xB1 + (−s̄)

(
− s̄

2
− xB1

)
,

leading to (xA1 , x
B
1 ) = (− s̄

3 ,−
s̄
3), which implies (xA2 , x

B
2 ) = (− s̄

6 ,−
s̄
6). Plugging in these trades,

dealer A incurs trading costs of 7s̄2

18 if he wins. So the refinement described in Section 3.1 requires

bA−s̄ = 7s̄2

18 to be his bid.

Case 3: (eA, eB) = (1,−1) and s = s̄. Assuming that xB2 = s̄
2 − x

B
1 (which ensures that dealer B’s

final inventory just meets the constraint eB +xB1 +xB2 −s ≥ −1), and ignoring all other constraints

on final inventory, dealers A and B respectively minimize

(xA1 + xB1 )xA1 +
(
xA1 + xA2 +

s̄

2

)
xA2

(xA1 + xB1 )xB1 +
(
xA1 + xA2 +

s̄

2

)( s̄
2
− xB1

)
,

leading to xA2 = −xA1
2 −

s̄
4 . Inducting backward, we obtain (xA1 , x

B
1 ) =

(
s̄
10 ,

s̄
10

)
, so that (xA2 , x

B
2 ) =(

− 3s̄
10 ,

2s̄
5

)
on path. Plugging in these trades, dealer A incurs trading costs of − 7s̄2

100 if he wins. So

the refinement described in Section 3.1 requires bAs̄ = 7s̄2

100 to be his bid.

Case 4: (eA, eB) = (1,−1) and s = −s̄. Assuming that xA2 = − s̄
2−x

A
1 (which ensures that dealer A’s

54



final inventory just meets the constraint eA + xA1 + xA2 − s ≤ 1), and ignoring all other constraints

on final inventory, dealers A and B respectively minimize

(xA1 + xB1 )xA1 +
(
xB1 + xB2 −

s̄

2

)(
− s̄

2
− xA1

)
(xA1 + xB1 )xB1 +

(
xB1 + xB2 −

s̄

2

)
xB2 ,

leading to xB2 = −xB1
2 + s̄

4 . Inducting backward, we obtain (xA1 , x
B
1 ) =

(
− s̄

10 ,−
s̄
10

)
, so that (xA2 , x

B
2 ) =(

−2s̄
5 ,

3s̄
10

)
on path. Plugging in these trades, dealer A incurs trading costs of 7s̄2

50 if he wins. So the

refinement described in Section 3.1 requires bA−s̄ = 7s̄2

50 to be his bid.

To ensure execution with probability one, Lemma B1 implies that an RFQ that splits the order

in this way must entail reserve prices b̄−s̄ ≥ 7s̄2

18 and b̄s̄ ≥ 7s̄2

18 . Hence, the minimum procurement

cost that can be achieved by such an RFQ is twice this lower bound:

ĉsplit ≡
7s̄2

9
.

Finally, observe that ĉsplit > ĉ1. The intuition is that—just as when one dealer is contacted—the

client’s procurement cost is driven by the worst case. As before, there are two symmetric worst

cases. But to fix ideas, focus on the one in which the client wants to buy while both dealers are

initially short (i.e., s = s̄ and eA = eB = −1). In this worst case:

• If one dealer is contacted, then he buys a total of s̄ on the market. In doing so, he trades at

an even rate, buying s̄
2 in each of the two periods, which is the cost-minimizing way to trade

under permanent price impact (e.g., Bertsimas and Lo, 1998).

• On the other hand, if the order is split among the two dealers, then each buys a total of s̄
2

on the market. However, each front-loads their trading, buying s̄
3 in the first period and s̄

6

in the second. Thus, the dealers do not collectively act to minimize their aggregate trading

cost. This increase in cost is ultimately passed on to the client.

Why do the dealers not collectively act to minimize their aggregate trading cost? If an indi-

vidual dealer shifts some volume from the second period into the first period, that raises p1

but has no effect on p2 (because of the permanent price impact). This affects that dealer’s

trading costs in two ways: (i) it reduces the trading cost for those marginal shares (because

of the permanent price impact, p2 > p1), but (ii) it increases the trading cost for the infra-

marginal shares that were already traded in the first period. In addition, there is a negative

externality on the first-period trading costs of the other dealer. But because this externality

is not internalized, each dealer frontloads his trading.

By splitting the order, the client loses the coordination benefits that she would obtain by

allocating the entire order to a single dealer and instead “competes against herself.”
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Because ĉsplit > ĉ1, the client optimally never splits her order in this way. Any RFQ policy that

does entail such order splitting could be improved by contacting only one dealer and offering the

entire order to him whenever the policy would call for order splitting. Thus, it was without loss of

generality that we did not allow for such order splitting in our baseline analysis.

C Illustration of optimal policy under limited commitment power

Section 4 considered an alternative version of the model, in which the client cannot commit to

randomization over how many dealers to contact. The optimal such policy was characterized by

Proposition 4′. This appendix provides an example that both illustrates and provides a geometric

interpretation for that result.

In fact, we use the same parametrization that was used to produce Figure 1: ψ = 0.85 and

ρ = 1. Then ĉ1 and ĉ2(φ) are as depicted in the first panel of Figure 1′, which coincides with the

first panel of Figure 1.

The second panel of Figure 1′ depicts min{φĉ2(1) + (1−φ)ĉ1, φĉ1 + (1−φ)ĉ2(0), ĉ2(φ0)}, which

we label C̃(φ). In this example, C̃(φ) is simply the lower envelope of c2(φ) and the line connecting

(0, ĉ1) to
(
1, ĉ2(1)

)
. This second panel also depicts

˜
φ, which is defined as the intersection between

c2(φ) and the aforementioned line. Alternatively, this is the minimum value for which C(φ) = ĉ2(φ).

We also have φ̃ = 1 in this case, but we do not depict this in the figure because φ̃ plays no role

what follows.

The third panel of the figure relates to case (iii) of Proposition 4′. Here, we have φ0 ∈ [
˜
φ, φ̃].

The optimal RFQ policy always contacts two dealers and discloses no information about the client’s

order. Under this policy, dealers’ beliefs therefore always coincide with the prior, so that the client’s

expected cost is ĉ2(φ0).

Finally, the fourth panel of the figure relates to case (iv) of Proposition 4′. Here, we have

φ0 ∈ (0,
˜
φ). The optimal RFQ policy always contacts two (one) dealers when s = s̄ (s = −s̄).

Hence, if two (one) dealers are contacted, they believe s = s̄ with probability one (zero). Under

this policy, the client’s expected procurement cost is therefore an appropriate convex combination

of ĉ1 and ĉ2(1), which is precisely what C̃(φ0) captures.

56



Figure 1′: Optimal RFQ Policies (ψ = 0.85 and ρ = 1)
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